← 返回
光伏发电技术 储能系统 ★ 5.0

一种考虑在线更新与灾难性遗忘的增量式光伏发电预测模型

An incremental photovoltaic power prediction model considering online updating and catastrophic forgetting

作者 Qian Guoa · Chunxue Zhaob · Xiaoyong Gaoa
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 299 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A novel online-updated predicting model PTER is proposed for PV power generation.
语言:

中文摘要

准确的光伏发电功率预测为电力系统调度提供了有价值且可靠的参考依据。在实际应用中,预测模型需要频繁更新以缓解因输入数据动态变化而导致的性能下降问题。然而,频繁更新可能导致模型对先前学习知识的灾难性遗忘,从而降低更新后模型的预测精度。为解决这一问题,本文提出了一种可在线更新的多元时间序列预测模型——PTER模型,该模型融合了PatchTST架构与DER++增量学习方法。该模型采用patch token策略捕捉光伏功率序列的多尺度周期特性,并通过自注意力机制捕获多变量间的依赖关系;同时利用经验回放机制缓解在线更新过程中的灾难性遗忘问题。因此,PTER模型提升了光伏发电功率预测的准确性,并增强了对异常天气条件的适应能力。本研究聚焦于新疆某电站的一个光伏发电单元,通过实验设计模拟了模型在实时数据更新下的演化过程。与PatchTST、Transformer、Informer和Autoformer模型相比,PTER模型的最大平均绝对误差降低了61.05%,均方根误差降低了57.29%,验证了其优越的预测精度。此外,相较于增量学习方法EWC、LwF和MAS,DER++分别使均方根误差进一步降低了13.71%、14.48%和11.11%。在阴天天气条件下,PTER模型在所有对比模型中表现出最低的平均绝对误差和均方根误差,表明其对天气条件的突变具有更强的适应性和泛化能力。

English Abstract

Abstract Accurate photovoltaic power generation forecasts provide valuable and reliable insights for power system scheduling. In real-world scenarios, forecasting models need to be frequently updated to mitigate performance degradation caused by evolving input data. However, frequent updates can lead to catastrophic forgetting of previously learned knowledge, thereby reducing the predictive accuracy of the updated model. To address this issue, this paper proposes an online-updated multivariate time series predicting model, the PTER model, which integrates PatchTST architecture with DER++ incremental learning. The model employs the patch token strategy to capture the multi-scale periodic characteristics of PV power sequences and captures multivariate dependencies through the self-attention mechanism. And it utilizes experience replay to mitigate catastrophic forgetting during online updates. Consequently, the PTER improves the accuracy of PV power generation prediction and enhances adaptability to abnormal weather conditions. The study focuses on a PV power generation unit at a power station in Xinjiang, simulating the model evolution process under real-time data updates through experimental design. Compared to PatchTST, Transformer, Informer, and Autoformer models, the PTER achieves a maximum reduction of 61.05 % in mean absolute error and a 57.29 % reduction in root mean square error, confirming its superior predictive accuracy. Furthermore, DER++ improves the RMSE by 13.71 %, 14.48 %, and 11.11 % compared to incremental learning EWC, LwF, and MAS, respectively. Under cloudy weather conditions, the PTER model exhibits the lowest mean absolute error and root mean square error among all evaluated models, indicating that it is more adaptable and generalizable to sudden changes in weather conditions.
S

SunView 深度解读

该增量学习光伏预测模型对阳光电源iSolarCloud智慧运维平台具有重要应用价值。PTER模型通过在线更新和经验回放机制,可有效解决SG系列逆变器大规模部署后的功率预测精度衰减问题。其多尺度时序特征捕获能力可优化PowerTitan储能系统的充放电策略制定,在异常天气下MAE和RMSE显著降低,提升了光储协同调度的可靠性。模型的增量学习架构可无缝集成至iSolarCloud平台,实现新疆等复杂气候区域电站的自适应预测维护,为1500V系统和ST系列PCS的智能化运营提供数据支撑,增强电网友好型并网控制能力。