← 返回
光伏发电技术 储能系统 ★ 5.0

基于LSTM-XGBoost模型的光伏电站短期功率预测

Short-term power prediction of photovoltaic power station based on LSTM-XGBoost model

作者 Chenyang Zhua · Yibo Tua · Qingya Weia · Yue Zanga · Peng Zhoua · Lixia Yangb · Jun Wangb · Yuanjie Yub · Ruirui Lvb · Jinxia Duc · Wensheng Yanad
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 300 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A hybrid machine learning algorithm was used to make the prediction.
语言:

中文摘要

摘要 目前,由于太阳能本身具有变异性与不确定性,受天气条件、一天中的时间以及季节变化等因素影响,光伏发电功率的精确预测仍是一个重大挑战。传统的预测模型往往难以捕捉数据中复杂的时序依赖关系和非线性关系,导致预测精度不理想。为应对这些挑战,本文提出一种新颖的混合方法,结合深度学习与集成学习的优势。采用长短期记忆网络(LSTM)提取时间序列数据中的动态特征,通过捕获短期和长期依赖关系,提供对时序信息的稳健表征。极端梯度提升算法(XGBoost)则利用其强大的非线性建模能力和特征选择技术进一步优化预测结果,增强模型的预测性能。实验结果表明,该混合模型在预测精度方面显著优于单独使用的LSTM或XGBoost模型。模型的验证还需依赖真实世界的数据集支持。本文使用全球排名领先的太阳能公司的专有数据集对模型进行了验证,并最终采用SHapley加性解释(SHAP)算法进行了分析。通过融合这两种方法的互补优势,本研究为能源管理与电网优化提供了一种高效且可解释的解决方案,最终有助于构建更可靠、更可持续的能源系统。

English Abstract

Abstract Currently, accurate prediction of photovoltaic (PV) power generation remains a significant challenge due to the inherent variability and uncertainty of solar energy, which is influenced by factors such as weather conditions, time of day, and seasonal changes. Traditional prediction models often struggle to capture the complex temporal dependencies and nonlinear relationships in the data, leading to suboptimal forecasting accuracy. To address these challenges, this work introduces a novel hybrid approach that leverages the strengths of both deep learning and ensemble learning. Long short-term memory network (LSTM) is employed to extract dynamic features in time series data, providing a robust representation of temporal information by capturing both short- and long-term dependencies. Extreme gradient boosting algorithm (XGBoost) further enhances the model’s predictive capability by utilizing its powerful nonlinear modeling and feature selection techniques to refine the predictions. The experimental results demonstrate that the present hybrid model significantly outperforms standalone LSTM or XGBoost models in terms of prediction accuracy. The validation of the model also requires real-world datasets for support. We validated the model using the top world-ranking solar company’s proprietary dataset and finally conducted an analysis with the SHapley Additive exPlanation (SHAP) algorithm. By combining the complementary strengths of these two methodologies, this work offers an efficient and interpretable solution for energy management and grid optimization, ultimately contributing to more reliable and sustainable energy systems.
S

SunView 深度解读

该LSTM-XGBoost混合预测模型对阳光电源iSolarCloud智慧运维平台及储能系统具有重要应用价值。通过捕捉光伏发电的时序依赖性和非线性特征,可显著提升ST系列PCS的功率预测精度,优化PowerTitan储能系统的充放电策略。模型的SHAP可解释性分析有助于增强预测性维护能力,提升SG系列逆变器的MPPT优化效果,为源网荷储协调控制提供更可靠的决策依据,推动能源管理系统智能化升级。