← 返回
基于动态时空注意力图卷积网络与误差修正的光伏功率预测方法
PV power forecasting method using a dynamic spatio-temporal attention graph convolutional network with error correction
| 作者 | Zhao Zhenabd · Yufei Yang · Fei Wangabc · Nanpeng Yue · Gang Huang · Xiqiang Chang · Guoqing Lif |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 300 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Multi-source NWP contains more information conducive to PV forecasting. |
语言:
中文摘要
摘要 优异的短期光伏发电功率预测对于制定光伏发电计划及实现电力系统的经济调度至关重要。然而,现有的短期预测方法并未深入探讨输入特征的可解释性,通常依赖静态相关性分析方法处理数值天气预报(NWP)数据,并且常常忽视对功率预测误差进行修正的关键步骤。针对上述三项研究不足,本文提出一种结合基于分解的误差修正机制的动态时空注意力图卷积网络(STAGCN)短期光伏功率预测方法。首先,采用时空重要性模型解释方法对多源NWP数据进行特征提取,识别出对模型预测具有关键作用的特征变量。其次,引入时空特征变换与融合技术,利用所提取的多源特征构建动态邻接矩阵和时空动态图结构,并将其输入至STAGCN模型中以获得初步预测结果。最后,采用改进的带自适应噪声的互补集合经验模态分解与变分模态分解相结合的方法、长短期记忆网络以及混合核密度估计,对预测误差序列进行分解与预测,进而对初步预测结果进行精细化修正。仿真结果表明,所提出的预测方法能够增强模型的可解释性,有效降低预测误差,显著提升预测精度。
English Abstract
Abstract Superior short-term photovoltaic (PV) power forecasting is essential for formulating PV generation plans and implementing economic dispatch in power systems. However, existing short-term forecasting methods do not delve deeply into the interpretability of input features. They rely on static correlation analysis methods for processing numerical weather prediction (NWP), and often overlook the crucial step of correcting power forecasting errors. Addressing these three research deficiencies, this study develops a short-term PV power forecasting method employing a dynamic spatiotemporal attention graph convolutional network (STAGCN) with decomposition-based error correction. Initially, the spatio-temporal importance model explanation method is employed for feature extraction from multiple NWP sources, identifying key features for model forecasting. Furthermore, the spatiotemporal feature transformation and fusion technique is incorporated to construct a dynamic adjacency matrix and spatiotemporal dynamic graph structure using derived multi-source features. This structure feeds into the STAGCN model, yielding initial forecasting results. Ultimately, the improved complementary ensemble empirical mode decomposition with adaptive noise and variational mode decomposition, long short-term memory network and mixed kernel density estimation are utilized for the decomposition and forecasting of error sequences, subsequently refining the preliminary forecasting results. Simulation results demonstrate that the proposed forecasting approach enhances model interpretability, reduces forecasting errors, and achieves improved forecasting accuracy.
S
SunView 深度解读
该动态时空注意力图卷积网络光伏功率预测技术对阳光电源iSolarCloud智能运维平台及储能系统具有重要应用价值。通过多源NWP特征提取和误差修正机制,可显著提升SG系列逆变器的发电功率预测精度,优化PowerTitan储能系统的充放电策略制定。该方法的可解释性增强和动态时空建模思路,可集成至预测性维护算法中,结合ST系列PCS实现更精准的经济调度,降低弃光率,提升光储一体化系统的整体运行效率和电网友好性。