← 返回
光伏发电技术 储能系统 ★ 5.0

用于提升光伏/热能系统效率的智能建模与设计框架

Smart modeling and design framework for efficiency enhancement in PV/T energy systems

作者 Faridoddin Hassani · Aref Khorrami · Ali Golshani · Afshin Kouhkord · Reza Ansari · Saeid Sahmani
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Developed a smart PV/T framework using parametric design DoE and NSDE for optimal efficiency.
语言:

中文摘要

摘要 全球能源需求不断增长,化石燃料日益枯竭,加之环境问题受到越来越多的关注,这些因素共同推动了向可再生能源转型的必要性。在众多可再生能源技术中,太阳能因其资源丰富且可持续性强而成为最具前景的选项之一。在光伏/热能(PV/T)系统中,多余的热量被传递给空气或水等冷却介质,以调节电池的工作温度。本文提出了一种智能化且可调控的框架,用于高效PV/T热力系统的设计。该框架首先构建PV/T单元的参数化设计,随后建立实验设计(DoE)模块。在当前模型中,参数化设计包含三个变量,并采用了面心中心复合设计方法。在获得将设计变量与目标函数关联起来的预测模型后,进一步分析了系统在不同工况下的性能表现。接下来,采用一种基于机器学习的算法——非支配排序微分进化算法(NSDE),寻找满足特定需求(如更高的热效率和/或电效率)的最优模型。研究发现,努塞尔数受雷诺数变化的影响显著。结果表明,当雷诺数从500增加到2200时,努塞尔数提升了超过80%,显示出显著的传热增强效果。优化框架还使电效率从约12.4%提高至13.2%,且该提升未借助纳米流体或相变材料实现。通过多目标优化方法,有效管理了热性能提升与压降之间的权衡关系,确保净能耗最小化。最终得到的优化构型在性能提升与能量输入需求之间实现了良好平衡,为高效率PV/T系统提供了一种实用且可扩展的设计策略。

English Abstract

Abstract The increasing global demand for energy, coupled with the depletion of fossil fuels and the growing awareness of environmental issues, has necessitated the transition towards renewable energy sources. Among the various renewable technologies, solar energy stands out as one of the most abundant and sustainable options. In photovoltaic-thermal (PV/T) systems, excess heat is transferred to a cooling medium, such as air or water, to regulate cell temperature. An intelligent and controllable framework is proposed for designing PV/T thermal systems with high levels of efficiency. The framework begins with creating a parametric design of the PV/T unit. Then, the design of experiment (DoE) block is created. In the present model, the parametric design consisted of three variables and the face-centered central composite scheme was utilized. After deriving a predictive model, linking the design variables and objective functions, the functionality of the system under varying conditions is analyzed. In the next step, a machine learning-based algorithm, i.e. non-dominated sorting differential evolution (NSDE), was utilized to find the optimum model, fulfilling adjusted needs such as higher thermal and/or electrical efficiency. It is noticed, that Nusselt number is highly influenced by changes in Reynolds number. The results revealed that the Nusselt number increases by over 80% as Reynolds number rises from 500 to 2200, demonstrating significant heat transfer enhancement. The optimization framework also led to an improvement in electrical efficiency from approximately 12.4% to 13.2%, achieved without the use of nanofluids or phase change materials. Trade-offs between thermal enhancement and pressure drop were managed through a multi-objective optimization approach, ensuring that net power consumption was minimized. The final optimized configurations reflect a balance between performance gains and energy input requirements, providing a practical and scalable design strategy for high-efficiency PV/T systems.
S

SunView 深度解读

该PV/T智能优化框架对阳光电源SG系列光伏逆变器具有重要参考价值。研究通过机器学习算法实现电效率从12.4%提升至13.2%,其多目标优化思路可应用于我司MPPT算法改进和热管理设计。特别是Reynolds数与Nusselt数的关联分析,可指导逆变器散热系统优化,降低功率器件温升,提升SiC/IGBT模块可靠性。该框架结合iSolarCloud平台的预测性维护功能,可实现光伏系统全生命周期效率最大化,为1500V高功率系统的热设计提供理论支撑。