← 返回
光伏发电技术 户用光伏 ★ 5.0

结合尺度自适应与位置引导模块的联合任务学习框架以改进遥感图像中户用屋顶光伏分割

Joint-task learning framework with scale adaptive and position guidance modules for improved household rooftop photovoltaic segmentation in remote sensing image

作者 Liang Li · Ning Lu · Jun Qin
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 光伏发电技术
技术标签 户用光伏
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Joint-task learning framework for improved household rooftop PV segmentation
语言:

中文摘要

摘要 从遥感图像中分割户用屋顶光伏(PV)系统时,边缘检测不准确是一个常见挑战,这阻碍了获取精确的光伏分布信息,而该信息对于光伏发展的规划与管理至关重要。一种广泛采用的解决方案是将额外的边缘检测任务引入联合任务学习框架中,以增强对边缘的感知能力。然而,现有的联合任务学习方法通常难以准确检测光伏边缘,并且缺乏有效机制来区分光伏边缘与相似物体的边缘。为应对上述挑战,本文提出了一种新颖的联合任务学习框架。该框架引入了尺度自适应模块(Scale Adaptive Module, SAM),能够根据光伏的实际尺寸和形状动态调整边缘特征的感受野,从而实现对不同形状和尺寸光伏边缘的精确检测。此外,基于光伏分割任务与边缘检测任务之间的内在关联,本文提出了位置引导模块(Position Guidance Module, PGM)。PGM不仅利用分割任务提供的分布信息引导边缘检测任务聚焦于识别光伏的语义边缘,还通过边缘检测任务的反向梯度增强分割任务在复杂背景下精确定位光伏的能力。在Duke和IGN数据集上进行的多轮重复实验结果表明,该框架具有优越的性能。与其他模型相比,所提出的框架显著提高了各类光伏边缘的检测精度,在户用屋顶光伏分割任务中取得了最佳表现,交并比(Intersection over Union, IoU)达到77.4%。本研究为户用屋顶光伏信息的精确获取提供了有价值的见解,并为面临边缘提取不准确挑战的目标分割任务提供了一种有前景的解决方案。

English Abstract

Abstract Inaccurate edge detection is a common challenge in the segmentation of household rooftop photovoltaic (PV) systems from remote sensing images, which hinders the accurate retrieval of PV distribution information critical for planning and managing PV development. A widely adopted solution is to incorporate an additional edge detection task into a joint-task learning framework to enhance edge perception. However, existing joint-task learning methods often struggle to accurately detect PV edges and lack effective mechanisms for distinguishing PV edges from those of similar objects. To address the above challenges, we develop a novel joint-task learning framework. This framework introduces a Scale Adaptive Module (SAM) that dynamically adjusts the receptive field of edge features based on the PV actual size and shape, enabling precise detection of PV edges with varying shapes and sizes. In addition, a Position Guidance Module (PGM) is proposed based on the intrinsic relationship between the PV segmentation task and the edge detection task. The PGM not only guides the edge detection task to focus on identifying the semantic edges of PVs using the distribution information from the segmentation task but also enhances the ability of the segmentation task to accurately locate PVs in complex backgrounds by utilizing the backward gradient from the edge detection task. Multiple rounds of repeated experiments on the Duke and IGN datasets demonstrate the framework's superior performance. Compared to other models, the proposed framework significantly improves the detection accuracy of various PV edges, achieving the best performance in household rooftop PV segmentation with an Intersection over Union (IoU) of 77.4 %. This study provides valuable insights into the accurate acquisition of household rooftop PV information and offers a promising solution for object segmentation tasks facing the challenge of inaccurate edge extraction .
S

SunView 深度解读

该户用光伏分割技术对阳光电源户用光伏业务具有重要应用价值。通过精准识别屋顶光伏边缘与分布信息,可优化SG系列户用逆变器的选型与布局规划,提升MPPT优化效率。结合iSolarCloud平台,该技术可实现分布式光伏资产的智能巡检与容量评估,支撑预测性运维。其边缘检测与语义分割联合学习框架,为阳光电源开发基于遥感影像的户用光伏潜力评估工具提供技术参考,助力户用市场精准开发与电站全生命周期管理。