← 返回
光伏发电技术 储能系统 ★ 5.0

基于有限数据的分布式区域光伏功率预测:一种鲁棒的自回归迁移学习方法

Distributed-regional photovoltaic power generation prediction with limited data: A robust autoregressive transfer learning method

作者 Wanting Zheng · Hao Xiao · Wei Pei
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 380 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 PV reference stations prediction accuracy is enhanced by the optimized DCS-LightGBM method.
语言:

中文摘要

摘要 本文提出了一种针对高比例数据缺失场景下的分布式区域光伏发电功率预测方法。该方法通过两个关键策略增强光伏发电信息的可用性。首先,针对区域内具有有限可用光伏发电数据的参考电站,构建了一种基于DSC-LightGBM算法的可解释性预测模型,以提高光伏发电功率预测的准确性。针对这些电站在气象数据获取方面存在的不足,通过物理建模引入太阳高度角和太阳时角等太阳辐射特征,并采用Shapley加性解释(SHAP)可解释算法分析原始特征与增强特征的重要性。其次,为解决区域内大量非参考电站在实际运行中数据匮乏的问题,本文首次提出了自回归迁移学习方法,将区域内的电站划分为“源域—虚拟源域—目标域”三个层次,从而扩展了数据缺失电站的参考信息来源。所提出的算法在三个地理位置、装机容量和气象特征各不相同的实测数据集上进行了验证。在高数据缺失率场景下,相较于其他方法,自回归迁移学习方法使区域整体预测误差平均降低了25.8%至50.3%;此外,在对单个非参考电站的发电功率估计中,该方法实现了19.7%至50.8%的平均误差降低。

English Abstract

Abstract This paper proposes a distributed regional photovoltaic (PV) power generation prediction method to address scenarios with a very high percentage of missing data. The proposed approach enhances PV power generation information through two key strategies. Firstly, for the limited reference power stations with available PV generation data in the region, an interpretable prediction model based on the DSC-LightGBM algorithm is developed to enhance the accuracy of PV power generation forecasts. For the problem of less available meteorological data at these stations, physical modeling introduces solar characteristics such as solar altitude and solar time angles, and then the Shapley Additive exPlanations (SHAP) interpretable algorithm is used to analyze the importance of original and enhanced features. Secondly, to address a lack of data at large number non-reference power stations in the region, this paper proposes for the first time the autoregressive transfer learning method, which divides the power stations in the region into three levels of “source domain-virtual source domain-target domain” to increase the reference information source of power stations that lack data collection. The proposed algorithm is validated on three datasets with varying locations, capacity sizes, and meteorological characteristics. In high missing-data scenarios, the autoregressive transfer learning method reduces regional prediction errors by an average of 25.8 % to 50.3 % compared to other approaches. Additionally, for estimating the power output of individual non-reference power stations, this method achieves an average error reduction of 19.7 % to 50.8 %.
S

SunView 深度解读

该分布式光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。针对区域内大量电站数据缺失场景,其自回归迁移学习方法可显著提升SG系列逆变器集群的发电预测精度(误差降低25.8%-50.3%)。DSC-LightGBM算法结合太阳高度角等物理特征的建模思路,可优化PowerTitan储能系统的充放电策略制定。SHAP可解释性分析有助于ST系列PCS在数据稀疏场景下实现精准功率调度,提升源网荷储协同控制能力,降低弃光率并增强电网友好性。