← 返回
光伏发电技术 多物理场耦合 ★ 5.0

基于多智能体优化的水电主导型水-风-光供应系统短期发电调度模型

Multiagent optimization for short-term generation scheduling in hydropower-dominated hydro-wind-solar supply systems with spatiotemporal coupling constraints

作者 Hongye Zhao · Shengli Liao · Benxi Liu · Zhou Fang · Huan Wang · Chuntian Cheng · Jin Zhao
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 382 卷
技术分类 光伏发电技术
技术标签 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A multiagent STGS model addresses the modeling and optimization issues of the HHWSSS.
语言:

中文摘要

摘要 随着电力需求的增长以及水电、风电和太阳能的快速发展,以水电为主的水-风-光供应系统(HHWSSSs)联合调度已成为电力系统领域的研究重点。然而,HHWSSSs内部精细的调度要求、复杂的约束条件以及时空耦合关系等独特特征,给短期发电调度(STGS)带来了显著挑战,包括整体优化计算时间过长、模型构建困难以及求解精度低等问题。为此,本文提出一种多智能体优化模型,以高效应对上述问题。首先,基于大系统分解原理,将HHWSSS的集中式优化转化为多智能体系统的协同运行,并利用根植于流域特征的分层分解策略提升求解效率。其次,在引入风电与光伏(WSP)出力预测的基础上,结合多智能体系统统一优化运行理论,构建了以最小化耗水量为目标的双层嵌套多智能体优化模型,实现智能化建模。最后,为提高求解质量,采用一种改进的交替方向乘子法(IADMM)算法,通过实施基于来流平衡与负荷匹配原则的修正策略,协调各智能体之间的交互行为。通过不同季节典型日数据集对所提模型的可行性与有效性进行验证。结果表明,该模型能够在合理的求解时间内有效确定HHWSSSs的发电计划,并为决策者提供在运行效率与成本之间权衡的灵活选择方案。

English Abstract

Abstract Driven by the increasing demand for electricity and the rapid development of hydropower, wind, and solar energy, the joint scheduling of hydropower-dominated hydro-wind-solar supply systems (HHWSSSs) has emerged as a key research focus in power systems . However, the unique characteristics of the delicate scheduling requirements, complex constraints, and spatiotemporal coupling connections within HHWSSSs present significant issues for short-term generation scheduling (STGS), including excessive computation times for overall optimization, difficult model formulation, and low solution accuracy. Therefore, this paper develops a multiagent optimization model for STGS to address these issues efficiently. First, the centralized optimization of HHWSSS is transformed into the cooperative operation of multiagent systems based on the large system decomposition principle, which uses the hierarchical decomposition strategy rooted in basin characteristics to enhance the solution efficiency. Second, a bilevel nested multiagent optimization model aimed at minimizing water consumption, subsequent to the integration of the forecasted WSP output , is formulated by combining the unified optimal operation theory of multiagent systems to enable intelligent model construction. Finally, to improve solution quality, an improved alternating direction method of multipliers (IADMM) algorithm is employed to coordinate interactions among agents by implementing a modification strategy based on inflow balance and load matching principles. The feasibility and effectiveness of the proposed model are validated via typical daily datasets from different seasons. The results demonstrate that the proposed model can effectively determine the generation plan for HHWSSSs within a reasonable solution time and offer decision-makers flexible options to weigh the trade-off between operational efficiency and costs.
S

SunView 深度解读

该多智能体优化调度技术对阳光电源具有重要应用价值。针对水风光互补系统的时空耦合约束问题,可直接应用于ST系列储能变流器与SG光伏逆变器的协同调度优化。其分层解耦策略可提升PowerTitan储能系统在多能源场景下的实时响应效率,IADMM算法思想可融入iSolarCloud平台实现分布式能源智能协调。该研究为构建源网荷储多主体协同控制架构提供理论支撑,特别适用于GFM控制模式下的虚拟同步发电机多机并联场景,可显著降低大规模新能源接入的计算复杂度,提升系统经济性与稳定性。