← 返回
光伏发电技术 储能系统 ★ 5.0

利用相变材料进行被动热管理以提高光伏板效率:关于材料、设计及有效技术的全面综述

Efficiency enhancement of PV panels with passive thermal management using PCM: An exhaustive review on materials, designs and effective techniques

作者 Rajvikram Madurai Elavarasan · Rishi Pugazhendhi · Saifullah Shafiq · Sivasankar Gangatharan · Mithulananthan Nadarajah · Gm M. Shafiullah
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 382 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A comprehensive review on fundamental characteristics and types of PCM for PV plant.
语言:

中文摘要

摘要 在能源转型范式中,最大化光伏发电(PV)技术的电力产出是一项关键战略。因此,必须考虑影响光伏效率的潜在因素。其中主要因素之一是太阳辐照,其本身具有可变性且超出人类控制范围。虽然较高的辐照水平在一定程度上可以提升光伏系统的输出功率,但同时也会导致运行温度升高,从而对光伏组件的效率产生负面影响。因此,被动冷却成为缓解因运行温度上升而导致效率下降的关键解决方案。本研究旨在对基于相变材料(PCM)的被动冷却技术进行全面综述,此类技术在提升光伏面板效率方面具有显著潜力。本文首先对理想的相变材料进行特性描述,并识别出多种可用于光伏面板冷却的相变材料及其热物理性质。随后,深入分析了多项关于光伏-相变材料(PV-PCM)系统的研究工作,重点关注诸如相变材料容器的设计参数与光伏容量、相变介质的变化、环境条件的影响,以及将其他被动冷却方法与PV-PCM系统集成等关键方面。本综述通过探讨各种影响因素对传热模式(如对流和传导)的作用,及其对PV-PCM系统性能的影响,系统地梳理了现有研究成果。为进一步提升相变材料的热性能,本文还提供了增强其热物理特性的综合方法概述,包括将相变材料与扩展表面、热管以及金属和非金属泡沫相结合的技术。此外,本文探讨了掺杂高导热材料以改善相变材料性能的潜力,并讨论了相变材料封装的优势。基于对PV-PCM系统实验与模拟研究中获得的关键观察结果以及热性能提升效果的分析,本文提出了一种用于选择适用于光伏冷却应用的合适相变材料的概念框架。此外,本综述还进一步贡献于该领域的发展,提出了未来研究方向、建议以及设计指导,以引导后续针对PV-PCM系统的研究工作。

English Abstract

Abstract Maximizing power production in photovoltaic (PV) technology is a key strategy in the energy transition paradigm. Therefore, it is essential to consider the potential factors that influence PV efficiency. One of the primary factors is solar irradiation which is inherently variable and beyond human control. While higher irradiation levels can boost PV power output to some extent, they also lead to higher operating temperatures, which can negatively impact the efficiency of the PV panel. As a result, passive cooling emerges as a key solution to mitigate the efficiency drop caused by rising operating temperatures. This study aims to provide a comprehensive review of phase change materials (PCMs)-based passive cooling techniques, which hold significant potential for enhancing the efficiency of PV panels. The review begins by characterizing the ideal phase change material (PCM) and identifying various PCMs, along with their thermophysical properties, that have potential applications in PV panel cooling. An in-depth investigation is then conducted on several PV-PCM research studies, focusing on key aspects such as the design parameters of PCM containers and PV capacity, variations in PCM mediums, the impact of environmental conditions, and the integration of other passive cooling approaches with the PV-PCM system. This review is conducted by exploring the impact of various influencing factors on heat transfer modes, such as convection and conduction, and their effects on the performance of the PV-PCM system. To further improve the thermal performance of PCMs, a holistic overview of approaches to enhancing their thermophysical properties is provided. This includes the integration of PCMs with extended surfaces, heat pipes, and metal and non-metal foams. Additionally, the review explores the potential of doping PCMs with high thermal conductivity materials and discusses the benefits of PCM encapsulation. Based on key observations derived from experimental and simulation studies of PV-PCM research and thermal performance enhancement, a conceptual framework for selecting suitable PCMs for PV cooling applications is proposed. Furthermore, the review extends its contribution by offering research directions, suggestions, and design recommendations to guide prospective studies in PV-PCM systems.
S

SunView 深度解读

该PCM被动热管理技术对阳光电源光伏逆变器产品具有重要协同价值。通过PCM相变材料降低组件工作温度,可显著提升SG系列逆变器的MPPT效率和系统发电量。建议将PCM热管理方案与iSolarCloud平台温度监测功能结合,实现组件温度预测性维护。该技术还可应用于PowerTitan储能系统的热管理优化,通过被动冷却降低PCS功耗,提升系统综合效率。研究中的导热增强技术(金属泡沫、热管)可为ST系列PCS散热设计提供创新思路,特别适用于高温环境下的储能电站应用场景。