找到 1 条结果
适应光伏波动的动态网络剪枝在低压配电网边缘计算中的应用
Photovoltaic fluctuation-adapted dynamic network pruning for low-voltage distribution network edge computing
Jian Zhaoa · Kai Denga · Xianjun Shaob · Zhibin Zhoub 等7人 · Applied Energy · 2025年1月 · Vol.397
摘要 光伏(PV)出力的固有波动性 necessitates 使用高复杂度的深度学习(DL)模型以实现准确预测。然而,此类模型即使在光伏出力稳定期间也以满容量运行,消耗了冗余的计算资源,并加重了低压配电网(LVDN)中资源受限的边缘设备的负担。为解决上述问题,本文提出了一种动态网络剪枝框架,能够根据光伏出力的波动情况自适应地调整深度学习模型的复杂度。首先,提出一种对光伏波动敏感的通道重要性评估方法,用于识别深度学习模型中的冗余结构。随后,构建了一个包含光伏运行约束的轻量化优化框架,根据光伏出力的...
解读: 该动态网络剪枝技术对阳光电源边缘计算场景具有重要应用价值。针对iSolarCloud平台的边缘侧设备,可将该方法集成至SG系列逆变器和ST储能变流器的本地控制器中,根据光伏波动自适应调整深度学习模型复杂度,在平稳期压缩72%计算量,显著降低边缘设备算力需求。该技术可优化PowerTitan储能系统的...