找到 2 条结果

排序:
储能系统技术 储能系统 SiC器件 ★ 5.0

基于物理雅可比信息的编码器-解码器神经网络用于非线性潮流回归

Physically Jacobian-Informed Encoder-Decoder ANNs for Nonlinear Power Flow Regression

Hao Yang · Kai Zheng · Wendong Su · Zhenglong Sun 等6人 · IEEE Transactions on Industry Applications · 2024年7月

潮流(PF)是电力系统稳态分析与控制的基础。传统的基于一组隐式非线性方程构建的模型驱动潮流计算方法采用牛顿 - 拉夫逊法进行迭代求解。然而,潮流计算的速度和收敛性会受到合适初值以及迭代过程效率的影响。数据驱动的潮流回归方法可以通过从潮流数据集学习显式映射函数来克服上述问题。但是,该方法仅实现了从潮流输入到输出的非线性映射,忽略了潮流计算中的物理规则,这可能导致精度和泛化能力较差。本文提出了一种基于物理雅可比信息的编解码器神经网络(NNs)用于潮流非线性回归。基于正向和反向潮流模型,构建了一种采用...

解读: 从阳光电源的业务实践来看,这项基于物理雅可比信息的神经网络潮流计算技术具有显著的工程应用价值。在新能源电站并网运行中,快速准确的潮流计算是实现主动电压支撑、功率调度优化和故障预判的基础。传统牛顿-拉夫逊迭代方法在高比例新能源接入场景下常面临收敛性问题,特别是在光伏、储能等分布式资源大规模并网时,系统...

储能系统技术 储能系统 强化学习 ★ 4.0

基于强化学习的CANFIS控制器自适应切负荷用于频率恢复准则导向控制

Reinforcement Learning Based Adaptive Load Shedding by CANFIS Controllers for Frequency Recovery Criterion-Oriented Control

Hao Yang · Bo Jin · Zhaohao Ding · Zhenglong Sun 等6人 · IEEE Transactions on Power Systems · 2024年5月

为满足电网导则中严格的频率恢复准则(FRC),本文提出一种面向受端电网的实时自适应切负荷方法。构建基于协同自适应神经模糊推理系统(CANFIS)的切负荷控制器,以母线频率的幅值偏差和恢复时间偏差作为反馈信号,实现智能切负荷决策。引入基于强化学习的确定性策略梯度(DPG)算法优化控制器性能,在最小切负荷成本下确保频率恢复满足FRC,并提升鲁棒性。通过在负荷站部署CANFIS控制器形成分散式控制策略,可实时自适应决策切负荷的时机、位置、量值与轮次。省级受端电网仿真验证了该方法的有效性与适应性。

解读: 该自适应切负荷技术对阳光电源PowerTitan储能系统和ST系列储能变流器具有重要应用价值。CANFIS控制器结合强化学习的频率响应策略可直接集成到储能系统的电网支撑功能中,增强构网型GFM控制的频率调节能力。通过实时监测母线频率偏差,储能系统可智能决策放电功率和持续时间,在满足电网FRC要求的同...