找到 1 条结果

排序:
光伏发电技术 储能系统 机器学习 深度学习 ★ 5.0

用于光伏输出预测的混合机器学习模型:结合随机森林与LSTM-RNN实现鱼菜共生系统的可持续能源管理

Hybrid Machine learning models for PV output prediction: Harnessing Random Forest and LSTM-RNN for sustainable energy management in aquaponic system

Tresna Dewi · Elsa Nurul Mardiyat · Pola Risma · Yurni Oktarin · Energy Conversion and Management · 2025年1月 · Vol.330

准确预测光伏发电(PV)系统输出对于优化可持续鱼菜共生系统中的能源管理至关重要,其中太阳辐照度的波动带来了重大挑战。本研究提出了一种结合长短期记忆循环神经网络(LSTM-RNN)与随机森林(RF)的混合模型,以有效应对这些挑战。该模型融合了LSTM-RNN在建模时间依赖性方面的优势以及RF在特征选择和处理非线性数据方面的能力,从而在电压、电流、功率和辐照度等参数上展现出优越的预测精度。通过采用包括归一化和序列转换在内的先进预处理步骤,使数据集与时间模式对齐,提升了模型的学习效率。评估指标如均方根...

解读: 该混合机器学习模型对阳光电源iSolarCloud智慧运维平台具有重要应用价值。LSTM-RNN与随机森林结合的预测方法可集成至SG系列光伏逆变器的MPPT优化算法,提升发电预测精度(RMSE<0.08)。模型对辐照度和温度的特征优先级分析(贡献度45%和22%)可优化ST系列储能PCS的充放电策略...