找到 4 条结果
七电平树型有源中点钳位变换器的拓扑与控制
Topology and Control of Seven-Level Tree-Type Active Neutral-Point-Clamped Converters
Mingzhe Wu · Kui Wang · Josep Pou · Kehu Yang 等6人 · IEEE Transactions on Industrial Electronics · 2024年9月
为降低中点钳位(NPC)多电平变换器的器件数量以提高功率密度,本文提出两种七电平树型有源NPC(7L-TANPC)变换器拓扑。相比现有七电平NPC拓扑,所提结构器件数量更少且总器件耐压更低,有助于降低成本并提升功率密度。为实现直流母线电容电压平衡,本文还提出了载波交叠脉宽调制方法,并结合零序电压注入与占空比调节实现电容电压主动平衡控制。仿真与实验结果验证了所提拓扑及调制控制策略的有效性。
解读: 该七电平树型ANPC拓扑对阳光电源多条产品线具有重要应用价值。在ST系列储能变流器和SG大功率光伏逆变器中,所提拓扑通过减少器件数量和降低总器件耐压,可显著提升功率密度并降低成本,契合1500V高压系统需求。载波交叠PWM与电容电压主动平衡控制策略可直接应用于PowerTitan大型储能系统的多电平...
功率变换器的FCS-MPC:一种事件驱动的脑情绪学习方法
FCS-MPC of Power Converters: An Event-Driven Brain Emotional Learning Approach
Xing Liu · Lin Qiu · Youtong Fang · Kui Wang 等6人 · IEEE Transactions on Industrial Electronics · 2024年8月
针对系统不确定性与低开关频率(SF)下的有限控制集模型预测控制(FCS-MPC)框架,本文提出一种事件驱动的脑情绪在线学习方法。该方法包含三个关键特征:采用双向模糊脑情绪在线学习机制并结合鲁棒控制项以逼近理想控制器;引入基于事件驱动的管状模型预测控制机制实现低SF运行;加入积分误差项以提升低SF下的跟踪性能。所提方法无需权重因子即可有效抑制不确定性、降低开关频率并减小跟踪误差,并给出了闭环系统的收敛性分析。通过多个文献中的基准实例验证了其有效性。
解读: 该事件驱动FCS-MPC技术对阳光电源多条产品线具有重要应用价值。在ST储能变流器中,低开关频率运行可直接降低SiC/GaN功率器件的开关损耗,提升系统效率;无权重因子设计简化了多目标控制参数整定难度。在SG光伏逆变器的MPPT控制中,脑情绪学习机制可增强参数摄动与电网扰动下的鲁棒性。在电动汽车驱动...
基于事件驱动的强化学习预测控制器设计——用于三相NPC变流器的在线逼近器方法
Event-Driven Based Reinforcement Learning Predictive Controller Design for Three-Phase NPC Converters Using Online Approximators
Xing Liu · Lin Qiu · Youtong Fang · Kui Wang 等6人 · IEEE Transactions on Power Electronics · 2024年12月
本文针对电力变换器系统,研究了一种利用在线逼近器的无模型强化学习预测控制问题的两步事件驱动方法,解决了系统不确定性和不必要的开关损耗等问题。具体而言,本技术报告的关键特点如下:1) 采用一个评判神经网络实时学习性能函数;2) 采用一个执行神经网络在线逼近预测控制器,并使从评判网络获得的学习性能函数最小化;3) 采用两步事件驱动控制协议降低开关频率(SF)。此外,我们进一步探讨了该方案对参数不确定性的敏感性,并量化了其在低开关频率运行和未知干扰条件下的性能。此外,还对网络权重估计误差进行了收敛性分...
解读: 从阳光电源的业务视角来看,这项基于事件驱动的强化学习预测控制技术对三相NPC变流器的应用具有重要战略价值。NPC(中点钳位)拓扑是我司大功率光伏逆变器和储能变流器的核心架构,该技术在提升系统性能和降低运维成本方面展现出显著潜力。 该论文提出的双步事件驱动控制策略直接针对变流器的两大痛点:一是通过在...
数据驱动与事件驱动相结合的电力电子变换器在线学习预测控制
Combining Data-Driven and Event-Driven for Online Learning Predictive Control in Power Converters
Xing Liu · Lin Qiu · Youtong Fang · Kui Wang 等6人 · IEEE Transactions on Power Electronics · 2024年9月
数据驱动与事件驱动相结合,为缓解经典有限控制集模型预测控制中电力变换器长期面临的研究难题(即模型参数不确定性和不必要的开关损耗)带来了可能。受此启发,我们将针对在线学习预测控制器的设计问题展开一项重要研究。与该领域的大多数先前研究不同,这可通过一个集成的数据驱动与事件驱动设计框架来实现。更确切地说,设计过程依赖于以下方面的结合:开发一种数据驱动的无模型自适应预测控制方法、引入在线强化学习技术以及利用事件驱动机制。此外,我们还基于输入 - 输出数据,针对低频开关操作下的未知不确定性,对鲁棒无模型预...
解读: 从阳光电源的核心业务视角来看,这项结合数据驱动与事件驱动的在线学习预测控制技术具有显著的战略价值。该技术针对功率变换器有限集模型预测控制(FCS-MPC)的两大痛点——模型参数不确定性和不必要的开关损耗——提供了创新性解决方案,这与我司光伏逆变器和储能变流器的核心技术需求高度契合。 从产品应用层面...