找到 1 条结果
隐私保护的概率风力发电预测:一种自适应联邦学习方法
Privacy-preserving probabilistic wind power forecasting: An adaptive federated approach
Xiaorong Wang · Yangze Zhou · Applied Energy · 2025年1月 · Vol.396
准确的风力发电预测(WPF)对于电力系统运行与控制的可靠性至关重要。近年来,概率性WPF受到越来越多的关注,已有多种先进的数据驱动方法被提出以实现高精度的概率预测。然而,数据驱动方法依赖于高质量和大规模的数据,而在现实中这些数据难以充分获取,导致现有方法的实际性能未能达到预期。为此,本文提出了一种基于联邦学习(FL)的概率风力发电预测框架,旨在利用其他风电场(WFs)的数据构建预测模型的同时,保障各参与方的数据隐私。为应对数据非独立同分布(non-IID)的问题,本文提出了自适应聚类策略以及基于...
解读: 该联邦学习风电预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)和iSolarCloud平台具有重要应用价值。通过隐私保护的多风场数据协同建模,可显著提升功率预测精度,优化储能系统充放电策略和能量管理。自适应聚类与个性化模型可针对不同地域风场特性定制预测算法,增强GFM/GFL控制策...