← 返回
风电变流技术 可靠性分析 ★ 5.0

隐私保护的概率风力发电预测:一种自适应联邦学习方法

Privacy-preserving probabilistic wind power forecasting: An adaptive federated approach

语言:

中文摘要

准确的风力发电预测(WPF)对于电力系统运行与控制的可靠性至关重要。近年来,概率性WPF受到越来越多的关注,已有多种先进的数据驱动方法被提出以实现高精度的概率预测。然而,数据驱动方法依赖于高质量和大规模的数据,而在现实中这些数据难以充分获取,导致现有方法的实际性能未能达到预期。为此,本文提出了一种基于联邦学习(FL)的概率风力发电预测框架,旨在利用其他风电场(WFs)的数据构建预测模型的同时,保障各参与方的数据隐私。为应对数据非独立同分布(non-IID)的问题,本文提出了自适应聚类策略以及基于弹性权重巩固的个性化方法。该自适应聚类策略在联邦学习训练过程中将风电场划分为不同的聚类组;同时,引入弹性权重巩固机制到全局模型的个性化过程中,以防止灾难性遗忘现象的发生。实验采用包含七个风电场的数据集,在五种不同的预测场景下进行验证。结果表明,所提出的方法能够在不泄露各风电场本地数据的前提下,实现稳定的聚类收敛、更高的预测精度以及更鲁棒的概率性风力发电预测性能。

English Abstract

Abstract Accurate wind power forecasting (WPF) is crucial for the reliability of the power system operation and control. In recent years, probabilistic WPF has gained growing attention, and various advanced data-driven approaches have been proposed to achieve accurate probabilistic WPF. However, the data-driven approach relies on high-quality/volume data, which is hard to collect in reality, leading to the performance of these approaches falling short of expectations. This work proposes a federated learning (FL) based probabilistic WPF framework to utilize the data from other wind farms (WFs) to construct forecasting models while preserving privacy. To overcome the issue of non-independent and identically distributed data, an adaptive clustering strategy and elastic weight consolidation-based personalization have been proposed. The adaptive clustering strategy is adopted to separate the WFs into different clusters in the process of FL training. Additionally, elastic weight consolidation is introduced into the global model personalization process to prevent catastrophic forgetting. The experiments have been conducted with a dataset consisting of seven WFs across five forecasting settings. The results show that the proposed approach can achieve stable clustering convergence, higher accuracy, and more robust probabilistic WPF performance without the leakage of local data of WFs.
S

SunView 深度解读

该联邦学习风电预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)和iSolarCloud平台具有重要应用价值。通过隐私保护的多风场数据协同建模,可显著提升功率预测精度,优化储能系统充放电策略和能量管理。自适应聚类与个性化模型可针对不同地域风场特性定制预测算法,增强GFM/GFL控制策略的前瞻性。建议将该方法集成至iSolarCloud智能运维平台,实现跨区域新能源场站的协同预测与调度优化,提升电网友好性和系统可靠性。