找到 1 条结果
解决风速预测中的少样本问题:一种基于分解与学习集成的新型迁移策略
Solving few-shot problem in wind speed prediction: A novel transfer strategy based on decomposition and learning ensemble
Yang Suna1 · Zhirui Tianb1 · Applied Energy · 2025年1月 · Vol.377
摘要 随着可再生能源需求的持续增长,全球正在建设新的风电场。然而,由于新设备的风速数据有限,直接对新风机进行风速预测变得极具挑战性。为解决这一问题,本文提出了一种针对少样本问题的快速迁移策略。该迁移框架分为两个阶段构建。第一阶段是在大样本数据上对模型进行预训练。首先,采用动态时间规整(Dynamic Time Warping, DTW)方法选择与目标域最相似的数据集;然后,利用变分模态分解(variational mode decomposition, VMD)将数据集分解为不同的模态,并基于样...
解读: 该迁移学习风速预测技术对阳光电源风电变流器及储能系统具有重要应用价值。通过动态时间规整和变分模态分解实现小样本快速建模,可直接应用于ST系列储能变流器的功率预测模块,优化充放电策略。学习集成方法捕获非线性特征的能力,能提升iSolarCloud平台预测性维护精度,特别适用于新建风储项目的快速部署。该...