找到 1 条结果

排序:
智能化与AI应用 微电网 强化学习 ★ 5.0

基于个性化联邦强化学习的多微电网协同优化调度低碳经济方法

Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning

Ting Yang · Zheming Xu · Shijie Ji · Guoliang Liu 等6人 · Applied Energy · 2025年1月 · Vol.378

摘要 互联多微电网(MMG)系统的协同优化调度为大规模可再生能源资源的高效利用提供了广阔前景和重要机遇。此类系统有助于实现能源资源的最优配置,并提升运行成本的经济性。然而,在协同优化调度过程中,异构微电网(MG)实体之间利益诉求的差异导致数据共享受阻,并引发隐私泄露问题。此外,多能耦合关系与高维决策过程进一步加剧了该问题的复杂性,可能导致优化过程难以收敛以及能源管理精度下降。同时,新建微电网缺乏运行数据与调度经验,制约了其调度任务的快速“冷启动”能力。为弥补上述研究空白,本文提出一种基于聚类的个...

解读: 该联邦强化学习多微网协同调度技术对阳光电源ST储能系统和iSolarCloud平台具有重要应用价值。可应用于PowerTitan储能集群的分布式优化调度,在保护各微网数据隐私前提下实现碳-电联合交易优化,降低综合成本5.78%、碳排放8.43%。其冷启动迁移策略可加速新建微网接入速度提升42.83%...