找到 1 条结果

排序:
储能系统技术 深度学习 ★ 5.0

利用聚光太阳能热能储存优化固体氧化物电解池:一种混合深度学习方法

Optimization of solid oxide electrolysis cells using concentrated solar-thermal energy storage: A hybrid deep learning approach

Hongwei Liua1 · Wei Shuaia1 · Zhen Yao · Jin Xuan 等7人 · Applied Energy · 2025年1月 · Vol.377

摘要 固体氧化物电解池(SOEC)是一种将CO2和H2O转化为合成气的前沿技术,具有显著的经济与环境效益。然而,该过程需要大量的高温热量输入,传统上依赖电能供给。本研究提出一种创新方法,利用聚光太阳辐射作为SOEC的可再生热源,并通过集成热能储存(TES)系统来应对太阳辐射固有的波动性挑战。我们构建了一种混合模型,将多物理场仿真与深度学习算法相结合,能够在实时直法向辐照度条件下快速优化电解过程。研究结果表明,在系统架构中引入TES后,SOEC入口处的温度变化率显著降低了53%,从而确保了运行的稳...

解读: 该研究将光热储能与固体氧化物电解耦合的深度学习优化方法,对阳光电源ST系列储能变流器及PowerTitan系统具有重要借鉴价值。其热能存储系统可降低53%温度波动率的控制策略,可应用于我司储能系统的热管理优化;混合多物理场仿真与深度学习算法的实时优化框架,可增强iSolarCloud平台的预测性维护...