找到 1 条结果
基于增强特征提取与新型损失函数的TimesNet光伏功率多步短期预测方法
Multi-step short-term forecasting of photovoltaic power utilizing TimesNet with enhanced feature extraction and a novel loss function
Sheng Yu · Bin He · Lei Fang · Applied Energy · 2025年1月 · Vol.388
摘要 天气条件的不稳定性常导致光伏发电呈现出随机性和波动性,使得准确可靠的光伏发电功率预测对于综合能源系统的稳定调度至关重要。由于难以捕捉相邻离散时间点之间的时序依赖关系,多步预测仍面临挑战,这主要归因于一维建模方法在时间序列特征表达能力上的局限性。为此,本文提出一种专门针对光伏发电功率多步短期预测的方法论框架。该框架基于TimesNet架构,通过将气象特征在二维空间建模以增强特征表达能力。此外,引入了一种新的特征提取模块,用于替代原始TimesNet中的Inception模块,缓解了标准卷积中...
解读: 该多步光伏功率预测技术对阳光电源iSolarCloud智慧运维平台及储能系统调度具有重要价值。TimesNet二维时序建模可增强SG系列逆变器功率预测精度,改进的损失函数能提升异常工况识别能力。12小时预测RMSE降低3.21%可优化ST系列PCS的充放电策略制定,减少PowerTitan储能系统的...