找到 1 条结果
基于智能电表数据的低碳技术配电网络近实时机器学习框架
Near real-time machine learning framework in distribution networks with low-carbon technologies using smart meter data
Emrah Dokur · Nuh Erdogan · Ibrahim Sengor · Ugur Yuzg 等5人 · Applied Energy · 2025年1月 · Vol.384
摘要 随着光伏、电动汽车、热泵和储能装置等低碳技术的广泛应用,配电网络面临日益突出的拥塞和电能质量问题,尤其是对电压稳定性带来了显著挑战。增强低压配电网中的电压可观测性对于主动电网管理变得愈发重要,因此高效准确的电压预测工具显得尤为关键。本研究提出了一种新颖的数据驱动方法,用于在低碳技术高渗透率的低压配电网中进行节点电压预测。该方法利用来自智能电表数据的功率时间序列,将极限学习机(Extreme Learning Machine)与单候选优化器(Single Candidate Optimize...
解读: 该近实时电压预测技术对阳光电源智慧能源管理系统具有重要价值。可集成至iSolarCloud平台,结合智能电表数据实现配电网电压预测,为ST系列储能变流器和SG系列光伏逆变器提供前瞻性调控依据。极限学习机算法的17倍计算效率提升,可优化PowerTitan储能系统的实时响应策略,在高渗透率低碳场景下实...