找到 1 条结果
基于混合深度学习方法的分数阶PID-PSS设计用于抑制电力系统振荡
Fractional Order PID-PSS Design Using Hybrid Deep Learning Approach for Damping Power System Oscillations
Devesh Umesh Sarkar · Tapan Prakash · Sri Niwas Singh · IEEE Transactions on Power Systems · 2024年6月
电力需求的急剧增长导致了传统电网的结构变化。现代电力系统包含先进的装置和设备,这使得维持可靠、安全的电力供应颇具挑战。低频振荡(LFO)是现代电力系统中一个显著的现象。为防止功角失稳,需要对这些振荡进行有效抑制。电力系统稳定器(PSS)通常用于解决这一问题。然而,传统的PSS在现代电网中无法有效抑制低频振荡。因此,本文采用混合深度学习方法,设计了一种将分数阶比例积分微分(FO - PID)控制器与传统PSS相结合的控制器。将卷积神经网络(CNN)和长短期记忆网络(LSTM)集成在一起形成CNN ...
解读: 该分数阶PID-PSS技术对阳光电源构网型储能系统具有重要应用价值。在PowerTitan大型储能系统并网运行中,低频振荡抑制是关键技术难点。文章提出的混合深度学习自适应参数整定方法,可直接应用于ST系列储能变流器的虚拟同步机VSG控制策略优化,通过分数阶控制器提升系统阻尼特性。该技术对阳光电源GF...