找到 1 条结果
一种基于人工智能预测温室环境中光伏-热系统的能量参数的方法
An artificial intelligence approach to predict energy parameters in a photovoltaic-thermal system within a greenhouse
Shojapour Pour · Ali Motevali · Seyed Hashem Samadi · Ranjbar-Nedamani Nedamani 等6人 · Solar Energy · 2025年1月 · Vol.295
摘要 农业各个领域日益增长的能源需求,尤其是在温室设施中,迫切需要探索可行的解决方案。利用可再生能源,并结合人工智能(AI)技术对能耗数据进行预测与分析,为应对这一挑战提供了有前景的途径。本研究采用多种机器学习模型,针对基于纳米流体(Al2O3、SiO2、Al2O3-SiO2)的光伏-热系统,在温室内外环境下对其能量参数(如输出功率、电效率、热效率和总效率)进行预测。建模过程采用了时延神经网络(TDNN)、多层感知机(MLP)以及非线性自回归(NARX)方法,并引入了对数激活函数。不同能量参数的...
解读: 该研究对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要价值。NARX神经网络预测光伏系统能效参数(R²=0.9979)的方法,可集成至我司智能运维平台,实现MPPT算法优化和发电效率预测性维护。纳米流体光热系统的AI建模思路,可应用于户用光伏热电联供场景,提升SG系列逆变器在农业光伏...