找到 1 条结果

排序:
光伏发电技术 机器学习 ★ 5.0

提升太阳能电池板性能:一种基于机器学习的灰尘检测与自动化喷水清洁策略

Enhancing solar panel performance: A machine learning approach to dust detection and automated water sprinkle-based cleaning strategy

Salman Hossain · All Mumtahina Arik · Iffat Nowshin Fahim · Jamal Uddin 等7人 · Solar Energy · 2025年1月 · Vol.287

摘要 光伏(PV)组件由于灰尘积聚,其效率显著降低。为了以经济有效的方式最小化灰尘对光伏系统的影响,需要确定最优的清洁间隔。为实现该目标,可利用机器学习(ML)模型检测光伏组件上的灰尘水平是否超过预设阈值,从而在无需现场人工干预的情况下判断是否需要清洁面板。基于此目标,本研究分析了灰尘在孟加拉国对光伏系统的不利影响,并提出了一种基于机器学习分类的新型灰尘检测方法,进而开发了一套清洁系统。本文实现了多种机器学习分类器,并对其性能进行了评估,其中表现最优的人工神经网络(ANN)模型达到了98.11%...

解读: 该机器学习驱动的光伏清洁技术对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。研究证实灰尘导致效率损失可达14.87%,ANN模型98.11%的检测精度可集成至智能运维系统,结合MPPT优化算法实现发电量损失预警。建议将该分类模型嵌入iSolarCloud平台,通过逆变器实时功率...