找到 1 条结果

排序:
储能系统技术 储能系统 电池管理系统BMS 深度学习 ★ 5.0

基于新型混合深度神经网络的电池SOC和SOH估计

Battery State of Charge and State of Health Estimation Using a New Hybrid Deep Neural Network Approach

Saeid Jorkesh · Ryan Ahmed · Saeid Habibi · Reza Hosseininejad 等5人 · IEEE Access · 2025年1月

电动汽车BEV采用增加推动电池管理系统BMS进步,以应对成本和续航焦虑等挑战,两者均与电池性能相关。本文研究各种荷电状态SOC和健康状态SOH估计方法,提出结合门控循环单元GRU和长短期记忆LSTM模型的新型混合神经网络。所提方法在SOH和SOC估计精度方面显示显著改进,所需训练数据最少。关键贡献包括(1)混合GRU-LSTM模型提升SOC/SOH精度,(2)自优化能力,(3)有效处理温度变化无需OCV-SOC查找表,(4)适用于各种锂电池类型。实验结果显示,该方法在-10°C至40°C温度范围...

解读: 该混合神经网络技术对阳光电源电池管理系统具有重要应用价值。阳光ST储能系统和OBC车载充电机需要高精度SOC和SOH估计以优化充放电策略和延长电池寿命。该GRU-LSTM混合模型在宽温度范围内的高精度(SOC误差2%、SOH误差0.65%)可集成到阳光BMS系统,提升电池状态估计准确性。在工商业储能...