找到 2 条结果
协同分布对齐神经网络用于高性能变流器故障定位
Synergetic Distribution Align Neural Network for High-Performance Power Converters Fault Location
Wu Fan · Qiu Gen · Zhang Gang · Sheng Hanming 等6人 · IEEE Journal of Emerging and Selected Topics in Power Electronics · 2025年4月
基于深度学习的数据驱动方法在变流器故障诊断中表现优异,但普遍存在依赖故障样本、精度与鲁棒性不足的问题,限制了其在工业系统中的应用。本文提出一种小样本学习理论,通过共享特征提取器实现严格的跨域特征分布对齐,以同时获取域不变性与故障判别性特征,从而提升诊断性能。基于该理论,设计了一种具有嵌入式结构和参数分离训练机制的渐近特征分布对齐神经网络。该结构通过多层渐近特征约束实现严格分布对齐,并结合渐近损失函数提升训练稳定性。在多种变流器上的实验表明,即使在零样本条件下,该方法仍能准确识别多个开路故障位置,...
解读: 该协同分布对齐神经网络技术对阳光电源ST系列储能变流器和SG系列光伏逆变器的智能运维具有重要应用价值。其零样本/小样本学习能力可解决工业现场故障数据稀缺问题,直接应用于iSolarCloud云平台的预测性维护模块。针对IGBT/SiC功率模块开路故障的精准定位能力,可显著提升PowerTitan大型...
逆变器系统早期故障检测的多阶密集特征提取
Intensive Multiorder Feature Extraction for Incipient Fault Detection of Inverter System
Min Wang · Feiyang Cheng · Min Xie · Gen Qiu 等5人 · IEEE Transactions on Power Electronics · 2024年10月
逆变器系统在航空航天、国防、交通运输、现代工业和电力系统中起着至关重要的作用,这促使学者和工程师们在故障诊断方面付出了大量努力。基于数据的方法在解决该问题时被广泛应用,因其可利用现有的历史数据,而无需进行复杂的数学建模,但它们在检测顽固的早期故障方面能力不足。因此,本文提出了一种深度多阶特征提取器(IMFE)用于逆变器系统的早期故障检测,该提取器能够深度提取统计特征并减少有害干扰。首先,采用一种在非相邻层之间具有短路径的密集结构,以实现多阶知识的复用。然后,对获取的特征进行优化,并舍弃低质量信息...
解读: 从阳光电源的业务视角来看,这篇关于逆变器系统早期故障检测的论文具有重要的工程应用价值。论文提出的密集多阶特征提取器(IMFE)方法,针对传统数据驱动方法在早期故障检测中的不足,通过密集连接结构实现多阶知识重利用和特征精炼,将故障检测率提升3.1%,这对于大规模光伏电站和储能系统的可靠性保障具有显著意...