找到 1 条结果

排序:
储能系统技术 ★ 5.0

基于数据驱动方法在液态金属电池容量骤降前的提前预警

Advance Warning Prior to Capacity Plunge of Liquid Metal Battery Using Data-Driven Methods

Qionglin Shi · Min Zhou · Haomiao Li · Kangli Wang 等5人 · IEEE Transactions on Industry Applications · 2025年2月

液态金属电池(LMB)因其卓越的安全性和长寿命,作为一种新型储能技术受到了广泛关注。分析其老化轨迹,特别是容量骤降过程,对于理解其老化机制和实现有效的健康诊断至关重要。然而,在容量骤降之前,该电池往往缺乏明显的预警信号,这阻碍了在实际应用中对容量的准确预测和采取主动措施。为应对这一挑战,本研究提出了一种数据驱动的方法,该方法能有效量化液态金属电池的容量变化,在容量骤降发生前发出预警。首先,采用经验模态分解方法将容量数据分解为多个分量,这些分量代表了液态金属电池的不同特征。随后,应用高斯混合模型为...

解读: 该液态金属电池容量骤降预警技术对阳光电源储能产品线具有重要借鉴价值。虽然阳光电源主要采用锂电池技术路线,但其数据驱动的预测性维护方法可直接应用于PowerTitan储能系统和ST系列储能变流器。通过在iSolarCloud云平台集成充放电曲线特征参数实时监测与机器学习异常检测算法,可提前数个周期识别...