← 返回
储能系统技术 ★ 5.0

基于数据驱动方法在液态金属电池容量骤降前的提前预警

Advance Warning Prior to Capacity Plunge of Liquid Metal Battery Using Data-Driven Methods

作者 Qionglin Shi · Min Zhou · Haomiao Li · Kangli Wang · Kai Jiang
期刊 IEEE Transactions on Industry Applications
出版日期 2025年2月
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 液态金属电池 容量骤降 数据驱动方法 老化分析 预警
语言:

中文摘要

液态金属电池(LMB)因其卓越的安全性和长寿命,作为一种新型储能技术受到了广泛关注。分析其老化轨迹,特别是容量骤降过程,对于理解其老化机制和实现有效的健康诊断至关重要。然而,在容量骤降之前,该电池往往缺乏明显的预警信号,这阻碍了在实际应用中对容量的准确预测和采取主动措施。为应对这一挑战,本研究提出了一种数据驱动的方法,该方法能有效量化液态金属电池的容量变化,在容量骤降发生前发出预警。首先,采用经验模态分解方法将容量数据分解为多个分量,这些分量代表了液态金属电池的不同特征。随后,应用高斯混合模型为每个分量构建特征分布,该分布呈现出驼峰状模式。最后,使用詹森 - 香农散度来量化这些驼峰的差异,为液态金属电池的健康状况和老化进程提供了具体的衡量指标。所提出的方法融合了老化分析和数据驱动的见解,能够对容量骤降发出提前预警,为液态金属电池未来的寿命预测和故障诊断提供了可靠的基础。

English Abstract

The liquid metal battery (LMB) has gained attention as a novel energy storage technology due to its exceptional safety and long lifespan. Analyzing the aging trajectory, particularly capacity plunge process, is crucial for understanding its aging mechanism and enabling effective health diagnosis. However, it often lacks clear warning signs prior to the capacity plunge, hindering accurate capacity prediction and proactive measures in real-world applications. To address this challenge, this study proposes a data-driven method that effectively quantifies the capacity various in LMBs, enabling advance warning before the occurrence of a capacity plunge. Firstly, the Empirical Mode Decomposition method decomposes the capacity data into several components, representing different characteristics of LMBs. Subsequently, a Gaussian mixture model is applied to construct the feature distribution for each component, which exhibits a hump-shaped pattern. Finally, The Jensen-Shannon divergence is used to quantify the divergence of these humps, offering a concrete measure of LMB health and aging progression. The proposed method integrating both aging analysis and data-driven insights provides an advance warning of the capacity plunge, offering a reliable foundation for future lifespan prediction and fault diagnosis of LMBs.
S

SunView 深度解读

该液态金属电池容量骤降预警技术对阳光电源储能产品线具有重要借鉴价值。虽然阳光电源主要采用锂电池技术路线,但其数据驱动的预测性维护方法可直接应用于PowerTitan储能系统和ST系列储能变流器。通过在iSolarCloud云平台集成充放电曲线特征参数实时监测与机器学习异常检测算法,可提前数个周期识别电池老化异常趋势,避免突发性容量衰减导致的系统故障。该方法可增强阳光电源智能运维体系的预测性维护能力,提升大型储能电站运行安全性与可靠性,降低运维成本,同时为探索液态金属电池等新型储能技术路线提供技术储备。