找到 1 条结果
MapVC:基于地图的深度学习用于电动汽车生态驾驶中的实时电流预测
MapVC: Map-based deep learning for real-time current prediction in eco-driving electric vehicles
Zhuoer Wanga1 · Xiaowen Zhub1 · Qingbo Wangc1 · Jian Zhoua 等7人 · Applied Energy · 2025年1月 · Vol.396
摘要 电源电池工作电流的预测对于保障电动汽车(EV)的工作性能至关重要。然而,复杂的真实世界生态驾驶场景——特别是再生制动系统(RBS)的频繁启用导致出现负电流值——给动力系统数据带来了强烈的随机性。为了克服传统数据驱动模型在捕捉此类复杂性方面的局限性,本文提出了MapVC框架。首先,引入一种基于地图的编码器,通过估计车辆运动状态来推断RBS的工作情况,显著增强了对复杂真实驾驶条件下数据的预测性能。此外,采用基于多头自注意力机制的解码器,以提取多尺度时间特征,实现对电池内部状态变化的全面建模。同...
解读: 该MapVC框架对阳光电源储能系统和充电桩产品具有重要应用价值。其基于地图的电流预测技术可直接应用于ST系列PCS和充电站的能量管理系统,通过预判制动回馈电流优化PowerTitan储能系统的充放电策略。多头注意力机制与双向GRU的组合为iSolarCloud平台的预测性维护提供了新思路,可提升电池...