找到 1 条结果
基于物理信息神经网络的含非线性频率约束线性交流最优潮流框架的电力系统前瞻调度
Look-ahead Dispatch of Power Systems Based on Linear Alternating Current Optimal Power Flow Framework with Nonlinear Frequency Constraints Using Physics-informed Neural Networks
Guoqiang Sun1Qihui Wang2Sheng Chen3Zhinong Wei4Haixiang Zang5 · 现代电力系统通用与清洁能源学报 · 2025年1月 · Vol.1
可再生能源渗透率的提高削弱了电力系统的频率稳定性。本文提出一种基于线性交流最优潮流框架并计及非线性频率约束的前瞻调度模型以应对该问题。为提升求解效率,引入物理信息神经网络(PINN)准确预测关键频率控制参数。PINN确保学习结果符合真实物理频率动态模型,所预测参数可加速调度模型求解,使其能高效调用商用求解器完成计算。在改进的IEEE 118节点系统上的数值仿真验证了所提模型的有效性与优势。
解读: 该基于PINN的前瞻调度技术对阳光电源储能系统和光伏产品具有重要应用价值。在PowerTitan大型储能系统中,可通过PINN快速预测频率响应参数,优化ST系列储能变流器的一次调频策略,提升电网频率支撑能力。对于工商业光伏场景,该线性化OPF框架结合非线性频率约束,可集成到iSolarCloud平台...