找到 3 条结果

排序:
光伏发电技术 储能系统 ★ 5.0

探索用于能源应用的铯基双卤化物钙钛矿:热电、光学和自旋极化磁性研究

Exploring Cs-based double halide perovskites for energy applications: a study of thermoelectric, optical, and spin-polarized magnetic properties

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R316) · Princess Nourah bint Abdulrahman University · Journal of Materials Science: Materials in Electronics · 2025年1月 · Vol.36.0

本研究系统地探讨了双卤化物钙钛矿Cs₂SrTaCl₆、Cs₂SrTaBr₆和Cs₂BaTaBr₆的热电、光学以及自旋极化磁性,以评估其在光伏及相关光电子器件应用中的潜力。计算得到的热导率数值呈现如下趋势:Cs₂SrTaCl₆(2.68 × 10¹⁴ W/m·K·s)> Cs₂BaTaBr₆(2.32 × 10¹⁴ W/m·K·s)> Cs₂SrTaBr₆(2.19 × 10¹⁴ W/m·K·s)。相应的功率因子值分别为:Cs₂SrTaCl₆为2.69 × 10¹⁰ W/m·K²·s,Cs₂BaT...

解读: 该双卤化物钙钛矿材料研究对阳光电源光伏逆变器及储能系统具有前瞻价值。其优异的光电特性(折射率2.17-2.45)可启发SG系列逆变器的光伏组件材料优化,提升光电转换效率。热电性能数据为ST系列PCS的热管理设计提供参考,特别是功率因子达10^10量级,有助于PowerTitan储能系统的温控优化。顺...

光伏发电技术 SiC器件 ★ 5.0

新型钙钛矿FrJCl3

J = Be, Mg)材料物理性质的研究:光伏应用的密度泛函理论预测

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R184) · Princess Nourah bint Abdulrahman University · Journal of Materials Science: Materials in Electronics · 2025年1月 · Vol.36.0

由于钙钛矿在太阳能电池及其它能源替代形式中的潜在应用,已引起广泛关注。本研究采用基于密度泛函理论的广义梯度近似方法及Perdew-Burke-Ernzerhof(GGA-PBE)模拟,系统研究了FrJCl3(J = Be, Mg)材料的热力学、光电和物理特性。通过分析弹性常数,利用容差因子(Tf = 1.17, 1.04)、形成能(Hf = −3.397, −3.511 eV/原子)、内聚能(CE = −3.397, −3.511 eV/原子)以及Born稳定性判据(Cij > 0)对材料的稳定...

解读: 该钙钛矿材料FrJCl3的DFT研究对阳光电源光伏逆变器产品具有前瞻价值。其1.71eV带隙的FrBeCl3半导体特性与高吸收系数(347,255 cm⁻¹)表明可提升光伏电池效率,为SG系列逆变器的MPPT算法优化提供新材料适配方向。材料的宽光谱响应(可见光至紫外)特性可启发iSolarCloud...

储能系统技术 储能系统 ★ 5.0

水热合成掺钕Co3O4纳米结构作为超级电容器电极

Hydrothermally synthesized neodymium-doped Co3O4 nanostructures as electrode for supercapacitor applications

Princess Nourah Bint Abdulrahman University (Grant No. PNURSP2025R378). The Deanship of Research · Graduate Studies at King Khalid University is greatly appreciated for funding this work through Large Research Project under grant number RGP2/235/46. · Journal of Materials Science: Materials in Electronics · 2025年1月 · Vol.36.0

各种可再生能源转换技术的进步推动了对高效能量存储系统的投资。过渡金属氧化物被广泛用作超级电容器应用中的电极材料;然而,仍存在一些局限性,包括比表面积小、导电性差等问题。然而,掺杂被认为是一种有效克服过渡金属氧化物局限性的方法。本研究采用水热合成法,通过掺入不同量的钕离子(Nd3+)来提升Co3O4的电容性能。利用多种技术手段对所制备材料的物理化学结构进行了表征。此外,在1 A/g电流密度下进行的恒电流充放电(GCD)分析表明,掺杂5.0 mol% Nd3+的Co3O4纳米颗粒表现出优异的电容保持...

解读: 该钕掺杂Co3O4超级电容器技术对阳光电源储能系统具有重要参考价值。其1398 F/g比电容和95.45%容量保持率可启发ST系列PCS的直流侧储能优化,特别适用于PowerTitan系统的功率缓冲单元和充电桩的峰值功率支撑模块。水热合成法制备的纳米结构材料可改善储能变流器母线电容性能,缩短响应时间...