← 返回
储能系统技术 储能系统 ★ 5.0

水热合成掺钕Co3O4纳米结构作为超级电容器电极

Hydrothermally synthesized neodymium-doped Co3O4 nanostructures as electrode for supercapacitor applications

语言:

中文摘要

各种可再生能源转换技术的进步推动了对高效能量存储系统的投资。过渡金属氧化物被广泛用作超级电容器应用中的电极材料;然而,仍存在一些局限性,包括比表面积小、导电性差等问题。然而,掺杂被认为是一种有效克服过渡金属氧化物局限性的方法。本研究采用水热合成法,通过掺入不同量的钕离子(Nd3+)来提升Co3O4的电容性能。利用多种技术手段对所制备材料的物理化学结构进行了表征。此外,在1 A/g电流密度下进行的恒电流充放电(GCD)分析表明,掺杂5.0 mol% Nd3+的Co3O4纳米颗粒表现出优异的电容保持率(95.45%)和比电容(Cs)(1398 F/g)。电化学阻抗谱(EIS)测试结果表明,该材料具有出色的电导率。较大的比表面积有助于提供更短的离子扩散路径,从而改善其电容性能。此外,实验结果表明,Nd掺杂的Co3O4在能量存储领域具有显著的应用前景。

English Abstract

The advancement of various renewable energy conversion technologies encourages investment in high-efficiency energy storage systems. The transition metal oxides are extensively employed as electrodes for supercapacitor applications; however, certain limitations persist, including small surface area and poor conductivity, among others. However, doping is regarded as an effective method to address the limitations of transition metal oxides. The present investigation employed a hydrothermal synthesis route to enhance the capacitive properties of Co 3 O 4 by doping with different amounts of neodymium ion (Nd 3+ ). The different techniques were employed to investigate the physiochemical structure of the fabricated materials. Moreover, galvanostatic charge–discharge (GCD) analysis at 1 A/g, revealed that Co 3 O 4 nanoparticles doped with Nd 3+ at a concentration of 5.0 mol% exhibited remarkable retention capacitance of (95.45%) and specific capacitance ( C s ) (1398 F/g). According to the results of the EIS test, the material exhibited outstanding electrical conductivity. The greater surface area responsible for providing the shorter diffusion path length to improve the capacitive properties. Moreover, findings derived from these experiments specify that the utilization of Nd doped Co 3 O 4 exhibits significant promise in the realm of energy storage application.
S

SunView 深度解读

该钕掺杂Co3O4超级电容器技术对阳光电源储能系统具有重要参考价值。其1398 F/g比电容和95.45%容量保持率可启发ST系列PCS的直流侧储能优化,特别适用于PowerTitan系统的功率缓冲单元和充电桩的峰值功率支撑模块。水热合成法制备的纳米结构材料可改善储能变流器母线电容性能,缩短响应时间,提升GFM控制模式下的电网支撑能力。该材料优异的导电性和循环稳定性为开发高功率密度混合储能系统提供新思路,可与锂电池协同应用于iSolarCloud平台管理的分布式储能场景。