找到 1 条结果

排序:
储能系统技术 储能系统 可靠性分析 机器学习 ★ 4.0

基于机器学习的高压输电线路电晕损耗预测

Forecasting Corona Losses on High Voltage Transmission Lines Using Machine Learning

Pradeep Kumar Gupta · Kaur Tuttelberg · Jako Kilter · IEEE Transactions on Power Delivery · 2025年7月

本文研究了机器学习在高压架空输电线路电晕损耗预测中的应用。由于气象条件与电晕损耗之间关系高度复杂,准确预测具有挑战性。模型构建采用了沿线多个气象站两年的气象数据及线路两端的PMU测量数据,结合XGBoost和集成随机森林(ERF)回归算法,考虑多变量气象输入。研究设计了四种预测场景:不同时间步长预测、季节性预测、多线路联合预测以及特征缩减对预测精度的影响。最优模型在98%的数据点上误差控制在±0.5 kW/km以内,均方根误差为0.16 kW/km。精确预测有助于提升系统可靠性并降低运行成本。

解读: 该电晕损耗预测技术对阳光电源PowerTitan大型储能系统和iSolarCloud智能运维平台具有重要应用价值。在高压并网场景中,储能系统需精确评估输电线路损耗以优化充放电策略和能量管理。研究中的XGBoost多变量气象预测模型(RMSE 0.16 kW/km)可集成至ST系列储能变流器的EMS能...