找到 1 条结果

排序:
储能系统技术 储能系统 电池管理系统BMS SiC器件 ★ 5.0

结合电化学与数据稀疏高斯过程回归的锂离子电池混合建模

Combining electrochemistry and data-sparse Gaussian process regression for lithium-ion battery hybrid modeling

Jackson Fogelquis · Xinfan Lin · Applied Energy · 2025年1月 · Vol.399

摘要 锂离子电池的广泛应用推动了先进电池管理系统(BMS)的同步发展,这些系统旨在通过最先进的控制、诊断和预测技术来最大化安全性和性能。为了实现这些功能,电池模型必须能够准确预测输出电压和物理内部状态,但由于系统不确定性不可避免以及在线计算资源有限,这一目标具有挑战性。为此,本文提出了一种计算高效的混合建模框架,该框架将基于物理原理的电化学电池模型与高斯过程回归(GPR)机器学习模型相结合,以补偿由系统不确定性引起的输出预测误差。该框架的一个关键特征是提出了一种数据采样方法,该方法利用GPR在稀...

解读: 该混合建模技术对阳光电源ST系列储能变流器及PowerTitan系统的BMS优化具有重要价值。通过融合电化学模型与高斯过程回归,可将电压预测误差从119mV降至7.3mV,参数估计精度提升一个数量级,且计算时间比仅为0.003,满足在线应用需求。该方法可直接应用于阳光储能系统的SOC/SOH估算、故...