找到 1 条结果
基于RGB成像的太阳能光伏故障分类深度学习及预处理技术比较
Deep learning for solar PV fault classification using RGB imaging and comparison of preprocessing techniques
Muthu Eshwaran Ramachandran · Gurukarthik Babu Balachandran · Petchithai Velladurai · Arthy Rajakumar · Solar Energy · 2025年1月 · Vol.301
摘要:有效检测太阳能光伏(PV)系统中的故障对于确保系统最佳性能和维护至关重要。本研究探讨了不同图像预处理技术对基于深度学习的分类模型准确性的影响,所用的光伏组件RGB图像(包括鸟粪、灰尘、物理/电气损伤、积雪和清洁状态)来自Kaggle数据集。每个像素的R、G、B值捕捉了视觉特征,并通过预处理进一步增强。因此,RGB图像作为卷积神经网络(CNN)分类的原始输入。研究结果表明,仅使用原始RGB图像时,模型准确率仅为85%–89%,但当结合预处理技术(灰度转换+高斯模糊)后,性能显著提升至最高94...
解读: 该深度学习故障分类技术对阳光电源SG系列光伏逆变器及iSolarCloud智能运维平台具有重要应用价值。研究证实通过灰度转换+高斯模糊预处理可将RGB图像故障识别准确率提升至94%,可直接集成至iSolarCloud的预测性维护模块,实现鸟粪、灰尘、物理损伤等六类故障的自动识别。该轻量化CNN模型(...