找到 1 条结果

排序:
风电变流技术 储能系统 多物理场耦合 深度学习 ★ 5.0

一种数据驱动的桨距角与转矩控制方法以提升风电场运行性能与效率

A Data-Driven Pitch Angle and Torque Control Method for Enhanced Wind Farm Operation Performance and Efficiency

Luobin W · Sheng H · Ji Z · Guan B 等5人 · IEEE Transactions on Sustainable Energy · 2025年9月

本文提出一种可逆深度门控网络(RDG-Net),用于风电场的桨距角(β)与发电机转矩(Tg)协同控制。该方法通过可逆实例归一化与深度可分离卷积(Revin-DSCNN)模型精确预测单个风电机组输出,抑制疲劳载荷并提升功率捕获效率。结合多头注意力与门控图循环神经网络(multi-GGRNN),有效建模机组间尾流耦合关系,避免高维数学建模带来的计算复杂性。RDG-Net部署于分布式服务器,实现在线训练,增强模型适应性与泛化能力。MATLAB仿真验证了其有效性。

解读: 该数据驱动的控制方法对阳光电源风电变流器及储能系统具有重要参考价值。RDG-Net的可逆深度门控架构可优化应用于ST系列储能变流器的功率调度算法,提升系统响应速度与控制精度。其多头注意力机制对建模储能集群间的功率协调具有启发意义,可用于优化PowerTitan大型储能系统的群控策略。此外,该方法的分...