找到 1 条结果
基于改进GMM分割和DenseNet的遥感识别新方法
A Novel Remote Sensing Recognition Using Modified GMM Segmentation and DenseNet
Muhammad Waqas Ahmed · Moneerah Alotaibi · Sultan Refa Alotaibi · Dina Abdulaziz Alhammadi 等6人 · IEEE Access · 2025年1月
航空图像准确分类是遥感关键任务,应用范围从土地覆盖制图、城市规划到灾害响应和环境监测。然而,标记数据有限、固有数据复杂性和高计算需求等挑战常阻碍传统方法性能。为应对这些挑战,我们提出创新框架,结合先进分割技术、多样化特征提取方法、优化算法和深度学习。我们方法始于新颖图割优化模糊GMM分割GC-GMM,确保精确目标识别和边界描绘。采用方位角平均特征提取、Haar小波变换和最大稳定极值区域MSER捕获涵盖纹理、频率和形状信息的丰富特征集。使用粒子群优化PSO融合和精炼这些特征,创建鲁棒信息表示。利用...
解读: 该遥感识别技术对阳光电源光伏电站监测和管理具有重要应用。阳光管理全球数百GW光伏电站,需要高效的遥感图像分析能力。该研究的分割和特征提取方法可应用于阳光iSolarCloud平台的卫星图像分析,自动识别光伏组件、阴影遮挡和环境变化。在大型地面电站中,该DenseNet分类器可实现电站区域规划、土地利...