找到 1 条结果
使用深度学习方法预测锂离子电池健康状态退化
Lithium-Ion Battery State of Health Degradation Prediction Using Deep Learning Approaches
Talal Alharbi · Muhammad Umair · Abdulelah Alharbi · IEEE Access · 2025年1月
及时预测锂离子电池健康状态对电池管理和寿命至关重要。传统集中式深度学习模型显示良好结果,但因需在单个节点收集和训练数据引发数据隐私担忧。本研究通过利用集中式即深度学习和分散式即联邦学习方法应对该挑战进行健康状态预测。使用包含充放电循环的NASA电池数据集进行模型训练和评估。集中式方法使用三种深度学习架构:1D卷积神经网络、CNN加长短期记忆网络和CNN加门控循环单元。1D CNN模型性能最佳展示强大预测能力,因此分散式学习即联邦学习中1D CNN模型与联邦平均技术在五个客户端使用,允许本地训练无...
解读: 该联邦学习电池诊断技术对阳光电源储能系统数据安全具有重要价值。阳光管理的大规模储能电站涉及海量电池数据,数据隐私和安全是核心关切。该联邦学习方法可在不上传原始数据的情况下实现全局模型优化,阳光可将该技术应用于BMS系统,实现跨电站的电池健康状态模型协同训练,提升诊断精度同时保护用户数据隐私,符合数据...