找到 1 条结果

排序:
电动汽车驱动 储能系统 SiC器件 可靠性分析 ★ 5.0

基于数字孪生与自演化补偿器的电力电子系统在线健康监测及改进参数辨识能力

Digital Twin-Based Online Health Monitoring of Power Electronics Systems With Self-Evolving Compensators and Improved Parameter Identification Capability

Yi-Hua Liu · Zong-Zhen Yang · Min-Chen Liu · IEEE Journal of Emerging and Selected Topics in Power Electronics · 2024年11月

电力电子系统(PES)在航空航天、可再生能源和电动汽车等领域至关重要。本文比较了粒子群优化(PSO)、灰狼优化和蜻蜓算法三种元启发式方法的参数估计性能,并提出一种结合物理行为的两阶段元启发式方法,显著提升了寄生电阻估计精度与参数识别速度。相较于传统PSO,MOSFET和电感寄生电阻估计误差分别由31%和45%降至1.5%和2.3%,计算时间减少逾60%。该方法在外部扰动下仍具高鲁棒性,平均使MOSFET和电感寄生电阻识别误差分别降低11.8%和16.7%。此外,引入自演化补偿器可在线自动调节控制...

解读: 该数字孪生健康监测技术对阳光电源ST储能变流器和SG光伏逆变器产品线具有重要应用价值。两阶段元启发式方法可精准辨识SiC MOSFET和电感寄生参数(误差降至1.5%/2.3%),直接提升PowerTitan储能系统功率模块的状态监测精度。自演化补偿器能在线自适应调节控制参数,可集成至iSolarC...