找到 1 条结果
融合人工智能与基于物理的建模用于极端高温事件下的长期级联水电调度
Integrated Artificial Intelligence and Physics-Based Modeling for Long-Term Cascaded Hydropower Scheduling under Extreme Heat Events
Maryam Baghkarvasef · Masood Parvania · IEEE Transactions on Sustainable Energy · 2025年6月
极端热浪事件对水电站运行构成严峻挑战。本文结合人工智能与基于物理的模型,提出一种高效的长期调度框架,旨在极端高温期间最大化水力发电量。所提出的模型生成的水价值可用于指导短期调度策略制定。构建了考虑陆-气相互作用的物理蒸发模型(PEM),以刻画极端高温下水库蒸发量的变化,并采用多变量长短期记忆(M-LSTM)模型预测PEM及调度所需的关键输入参数。通过回归型机器学习算法拟合水电出力函数,实现了非线性、非凸特性的线性化集成。案例研究涵盖哥伦比亚河上11个级联水电站,结果表明该模型能有效优化水库调度,...
解读: 该研究的AI-物理混合建模方法对阳光电源PowerTitan储能系统与水光互补项目具有重要应用价值。其M-LSTM多变量预测模型可移植至iSolarCloud平台,用于极端气候下的储能系统热管理与功率预测,优化ST系列储能变流器的散热策略与功率调度。物理蒸发模型的陆-气耦合思路可启发储能电站的热力学...