找到 1 条结果
机器学习方法预测室内Li-Fi应用中自适应OFDM传输的直流偏置
ML Approach to Predict DC Bias for Adaptive OFDM Transmission in Indoor Li-Fi
Marwah T. Salman · David R. Siddle · Amadi G. Udu · IEEE Access · 2025年1月
多电平正交振幅调制M-QAM结合光正交频分复用中的直流偏置DCO-OFDM为室内光保真Li-Fi系统提供频谱高效解决方案和自适应传输速率。然而,DCO-OFDM方案提出的重大挑战是确保发射信号幅度非负所需的直流偏置额外功率。这些偏置信号根据光功率约束被裁剪,施加影响传输误码率BER的裁剪噪声。这种性能下降取决于对直流偏置的调整,需要持续修改以支持自适应传输。因此,同时解决直流偏置优化和裁剪缓解对提供可靠节能传输至关重要。本文提出机器学习ML方法基于OFDM信号统计特性和系统特征预测最优直流偏置。...
解读: 该自适应偏置优化技术对阳光电源多电平变流器控制具有借鉴意义。阳光ST储能变流器采用三电平或多电平拓扑,需要精确的偏置和调制策略优化。该研究的机器学习预测方法可应用于阳光变流器的自适应调制算法,根据工况动态优化PWM偏置,降低谐波和开关损耗。在光伏逆变器中,该技术可优化MPPT算法的直流工作点,提升发...