找到 1 条结果

排序:
电动汽车驱动 SiC器件 机器学习 ★ 5.0

GMFLDA:基于图卷积网络的lncRNA-疾病关联预测改进方法

GMFLDA: Improved Prediction of lncRNA-Disease Association via Graph Convolutional Network

Kwangsu Kim · Jihwan Ha · IEEE Access · 2025年1月

随着多种异构网络的快速发展,整合多源结构以捕捉实体间与实体内关系的需求日益增长。基于网络的方法在节点标签预测与潜在关联挖掘中表现出色,广泛应用于推荐系统、基因互作及lncRNA-疾病关联预测等领域。本文提出GMFLDA,一种融合图卷积网络与深度矩阵分解的机器学习框架。该模型利用GCN提取lncRNA与疾病的高保真特征表示,并通过多层感知机实现深度矩阵分解以推断潜在关联。实验结果显示,该模型在留一法和五折交叉验证中AUC分别达0.9183与0.9057,性能优于五种前沿方法,展现出卓越的预测能力,...

解读: 该图卷积网络与深度矩阵分解融合方法对阳光电源智能运维体系具有重要借鉴价值。其多源异构网络整合思路可应用于iSolarCloud平台的故障预测:通过构建设备-故障-环境参数的多层关联网络,利用GCN提取SG光伏逆变器、ST储能变流器的运行特征,结合矩阵分解推断潜在故障模式。该方法的高保真特征提取能力可...