找到 1 条结果

排序:
光伏发电技术 储能系统 SiC器件 可靠性分析 ★ 5.0

基于LightGBM与自注意力编码-解码网络的日前太阳能功率预测

Day-Ahead Solar Power Forecasting Using LightGBM and Self-Attention Based Encoder-Decoder Networks

Hossein Nourollahi Hokmabad · Oleksandr Husev · Juri Belikov · IEEE Transactions on Sustainable Energy · 2024年10月

可再生能源大规模并网带来的随机性与间歇性对电网可靠性与稳定性构成挑战,数据驱动的预测方法在缓解该问题中至关重要。然而,在历史数据不足的情况下,纯数据驱动模型性能往往受限。为此,本文提出一种融合物理模型与机器学习的新型日前光伏功率混合预测框架,提升低数据场景下的预测可靠性;同时针对数据丰富环境设计了一种创新的机器学习流水线。该方法包含针对不同天气条件定制的回归器组与基于自注意力的编码-解码网络,并通过元学习器融合双分支输出,显著提升了预测精度。实验结果表明,所提方法在测试数据集上优于基准模型。

解读: 该混合预测框架对阳光电源iSolarCloud智能运维平台及SG系列光伏逆变器具有重要应用价值。日前功率预测可直接集成至智能诊断系统,优化MPPT算法的前瞻性调度策略。针对ST系列储能变流器,精准的24小时功率预测能显著提升储能系统充放电策略优化,降低电网波动冲击。LightGBM与自注意力网络的双...