找到 1 条结果

排序:
氢能与燃料电池 SiC器件 多物理场耦合 机器学习 ★ 4.0

集成多物理场建模与机器学习以提升质子交换膜水电解系统的效率与热管理

Integrating multiphysics modeling and machine learning for enhanced efficiency and thermal management in PEM water electrolyzer systems

Zilong Yanga · Jin Yangb · Haoran Sunb · Weiqun Liua 等6人 · Applied Energy · 2025年1月 · Vol.401

摘要 质子交换膜(PEM)水电解槽是实现可持续氢气生产的一项有前景的技术,然而在不同工况下优化其性能仍是一个关键挑战。本研究构建了一个优化问题,旨在考察关键操作参数(如入口流量Q_in和入口温度T_in)如何影响一个5 cm × 5 cm的PEM水电解槽的性能。目标是最大化系统效率、确保热安全性,并最小化辅助系统(BOP)的能耗。首先,提出了一种集管式直通道PEM水电解槽模型,该模型考虑了多物理场耦合效应,用以揭示入口温度和流量对氢气生产效率及BOP能耗的影响规律。随后,建立了用于提升系统性能的...

解读: 该PEM电解槽多物理场建模与机器学习优化技术对阳光电源氢能业务具有重要借鉴价值。研究中的热管理策略、效率优化方法可直接应用于ST系列储能变流器的热设计优化,通过ANN-PSO算法降低计算成本的思路可迁移至iSolarCloud平台的预测性维护模块。多物理场耦合仿真经验可支撑SiC器件在大功率电解系统...