找到 1 条结果

排序:
光伏发电技术 储能系统 深度学习 ★ 5.0

一种基于演化多分位数长短期记忆神经网络的超短期光伏功率概率预测混合模型

A novel hybrid model based on evolving multi-quantile long and short-term memory neural network for ultra-short-term probabilistic forecasting of photovoltaic power

Jianhua Zhu · Yaoyao He · Applied Energy · 2025年1月 · Vol.377

摘要 概率预测在消除光伏发电不确定性方面具有极其重要的作用。由于具备强大的泛化能力,分位数回归长短期记忆神经网络(QRLSTM)被广泛认为是光伏发电概率预测中颇具前景的方法。然而,这类模型对每个分位数单独进行训练,忽略了不同分位数之间的相关性与单调性约束,且多次训练导致计算复杂度过高。此外,由分位数回归产生的不可微分的分位损失函数对优化算法提出了较高要求。为解决上述问题,本文提出一种基于演化分布混沌粒子群优化算法(EDCPSO)优化的多分位数LSTM(MQLSTM)模型,以实现高质量的光伏发电概...

解读: 该超短期光伏功率概率预测技术对阳光电源SG系列逆变器及iSolarCloud平台具有重要应用价值。MQLSTM多分位点神经网络可集成至智能运维系统,实现光伏出力的概率区间预测,优化MPPT控制策略。结合ST系列储能变流器,可基于预测置信区间动态调整充放电计划,提升能量管理精度。EDCPSO优化算法的...