找到 1 条结果

排序:
储能系统技术 储能系统 微电网 强化学习 ★ 5.0

基于元强化学习的自适应可解释储能控制应对动态场景

Meta Reinforcement Learning Based Adaptive and Interpretable Energy Storage Control Meets Dynamic Scenarios

Yibing Dang · Jiangjiao Xu · Fan Yang · Changjun Jiang 等5人 · IEEE Transactions on Sustainable Energy · 2025年4月

随着可再生能源的广泛应用,储能系统在能量调度与经济套利中发挥关键作用。传统强化学习方法因泛化能力有限,在高动态环境下易出现性能下降。本文提出一种基于元强化学习的储能控制框架,包含离线训练与在线适应阶段,通过双循环更新机制和多任务学习获得高泛化性的初始参数,并结合Shapley值方法增强决策可解释性。实验表明,该模型在多种动态微网场景下适应性强,性能较传统方法提升20%至50%,且调度决策特征贡献分析符合人类直觉。

解读: 该元强化学习储能控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。其自适应双循环更新机制可显著提升储能系统在光伏出力波动、负荷变化等动态场景下的调度性能,相比传统方法提升20%-50%的经济效益直接增强产品市场竞争力。Shapley值可解释性分析可集成至iSol...