找到 1 条结果
基于物理信息生成式深度学习的风力机分层动态尾流建模
Hierarchical dynamic wake modeling of wind turbine based on physics-informed generative deep learning
Qiulei Wang · Zilong Ti · Shanghui Yang · Kun Yang 等6人 · Applied Energy · 2025年1月 · Vol.378
摘要 随着电力需求的不断增长,风电场的规模远超以往。功率与载荷预测是风电场布局优化中最关键的两个课题。传统的尾流建模方法,如解析模型和计算流体动力学(CFD)模拟,在准确性和效率方面均难以有效应对如此大规模的问题。本研究提出了一种新颖的基于生成式深度学习的风力机分层动态尾流建模方法——PHOENIX(PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration),用于捕捉风...
解读: 该深度学习风电尾流建模技术对阳光电源风电变流器及储能系统具有重要价值。通过精准预测风机功率输出的时空特性,可优化ST系列储能PCS的充放电策略,提升风储协同效率。该物理信息神经网络方法可借鉴应用于iSolarCloud平台的预测性维护算法,结合GFM控制技术实现风电场群级功率平滑输出。动态尾流模型的...