找到 1 条结果
SolarNexus:一种用于自适应光伏功率预测与可扩展管理的深度学习框架
_SolarNexus_: A deep learning framework for adaptive photovoltaic power generation forecasting and scalable management
Hyunsik Mina · Byeongjoon Noh · Applied Energy · 2025年1月 · Vol.391
摘要 光伏(PV)功率预测在可再生能源管理中发挥着关键作用。然而,传统预测模型通常难以适应动态环境变化,并在不同区域间实现有效扩展。针对这些挑战,本文提出了一种融合时间卷积网络(TCN)、多头注意力机制(MHA)、在线学习和迁移学习的深度学习框架。为验证所提方法的有效性,我们采用了来自韩国九个太阳能电站的数据。该数据集来源于韩国开放数据门户和韩国气象厅,涵盖了2017年1月1日至2019年12月31日的逐小时光伏发电量及气象参数,其中两年用于训练,一年用于测试。我们在相同条件下将所提出的TCN-...
解读: 该深度学习预测框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。TCN-MHA在线学习模型可集成至SG系列逆变器和ST储能系统的智能调度算法,实现17.19%的NRMSE预测精度,支持多区域迁移学习降低85%训练时间和99%功耗。该技术可优化PowerTitan储能系统的充放电策略,...