找到 1 条结果

排序:
储能系统技术 储能系统 ★ 5.0

基于Transformer扩散模型的风速时空概率预测

Spatio-Temporal Probabilistic Forecasting of Wind Speed Using Transformer-Based Diffusion Models

Hao Liu · Junqi Liu · Tianyu Hu · Huimin Ma · IEEE Transactions on Sustainable Energy · 2025年7月

时空风速预测对提升能源转换效率与优化资源配置具有重要意义。现有方法在捕捉复杂的时空依赖关系及适应风速动态变化方面存在不足。为此,本文提出概率时空扩散Transformer(PSTDT)模型,结合去噪扩散生成模型与Transformer的时空建模优势。该模型引入双空间注意力模块以捕获静态位置关系与动态空间依赖,并设计双阶段时间模块建模周期间依赖与自回归特征,辅以时间自适应层归一化机制提升预测稳定性与精度。实验表明,PSTDT在多个数据集上显著优于现有方法,连续排序概率分数降低8%–20%,平均绝对...

解读: 该时空风速概率预测技术对阳光电源储能系统与智能运维平台具有重要应用价值。在PowerTitan大型储能系统中,精准的风速预测可优化风储协同控制策略,提升ST系列储能变流器的充放电调度精度,降低8%-20%的预测误差可显著改善储能系统的能量管理效率。该Transformer扩散模型的时空建模能力可集成...