找到 1 条结果

排序:
储能系统技术 储能系统 ★ 5.0

一种基于云边智能的配电网分区与运行优化方法

A Cloud-Edge Intelligence-Based Optimization Method for Distribution Network Partitioning and Operation Considering Simulation Inaccuracy

Renjun Wang · Hongjun Gao · Haifeng Qiu · Longbo Luo 等6人 · IEEE Transactions on Power Systems · 2025年1月

针对分布式可再生能源和负荷波动对配电网运行安全的影响,本文提出一种基于云边协同智能的优化方法,用于配电网分区与实时运行控制。该方法在云端集中训练,在边缘侧实时执行,通过新型分区策略降低计算负担,并引入开关重要性评估方法以压缩动作空间维度。建立多智能体马尔可夫决策过程模型,结合改进的混合多智能体软Actor-Critic算法与域随机化方法,提升策略在仿真与实际系统存在模型失配时的鲁棒性。IEEE 33节点系统及实际445节点网络的仿真验证了所提方法的有效性与优势。

解读: 该云边协同优化技术对阳光电源PowerTitan储能系统和iSolarCloud平台具有重要应用价值。其云端训练-边缘执行架构可直接应用于ST系列储能变流器的分布式协调控制,通过多智能体强化学习实现储能集群的实时功率调度与电网分区管理。域随机化方法增强的鲁棒性可提升储能系统在模型失配场景下的控制可靠...