← 返回
一种基于云边智能的配电网分区与运行优化方法
A Cloud-Edge Intelligence-Based Optimization Method for Distribution Network Partitioning and Operation Considering Simulation Inaccuracy
| 作者 | Renjun Wang · Hongjun Gao · Haifeng Qiu · Longbo Luo · Minghui Chen · Zhaoyang Dong |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 配电网分区运行 云边智能优化方法 开关重要性计算 多智能体马尔可夫决策过程 改进算法 |
语言:
中文摘要
针对分布式可再生能源和负荷波动对配电网运行安全的影响,本文提出一种基于云边协同智能的优化方法,用于配电网分区与实时运行控制。该方法在云端集中训练,在边缘侧实时执行,通过新型分区策略降低计算负担,并引入开关重要性评估方法以压缩动作空间维度。建立多智能体马尔可夫决策过程模型,结合改进的混合多智能体软Actor-Critic算法与域随机化方法,提升策略在仿真与实际系统存在模型失配时的鲁棒性。IEEE 33节点系统及实际445节点网络的仿真验证了所提方法的有效性与优势。
English Abstract
The increasing emergence of distributed renewable generation and varying load demand adversely affect the security of distribution network operation. In this paper, a cloud-edge intelligence-based optimization method is proposed for distribution network partitioning and operation to derive the near-optimal real-time control strategies of switches, energy storage systems, static var compensators, and capacitor banks. It realizes centralized training in the cloud and real-time execution at edge. To address the computational burden in large-scale distribution networks, a novel partitioning method is devised to facilitate network division for operation optimization. Then, a new switch importance calculation approach is introduced to reduce the dimensionality of switch action space. Next, a multi-agent Markov Decision Process is established, where each agent corresponds to a type of controlled devices in each sub area. Finally, considering the specific inaccuracies in the distribution network model, a modified domain randomization method and an improved mixed multi-agent soft Actor-Critic algorithm is developed to enhance the robustness of policies under mismatch between the simulation model and the practical system. Numerical studies in IEEE 33-bus system and a practical 445-node distribution network are implemented to validate the effectiveness and merits of the proposed optimization method.
S
SunView 深度解读
该云边协同优化技术对阳光电源PowerTitan储能系统和iSolarCloud平台具有重要应用价值。其云端训练-边缘执行架构可直接应用于ST系列储能变流器的分布式协调控制,通过多智能体强化学习实现储能集群的实时功率调度与电网分区管理。域随机化方法增强的鲁棒性可提升储能系统在模型失配场景下的控制可靠性,特别适用于大规模光储电站的动态分区与潮流优化。开关重要性评估与动作空间压缩技术可降低iSolarCloud平台的边缘计算负担,提升分布式能源管理系统(DEMS)的实时响应能力,为构网型储能系统的智能调度提供算法支撑。