找到 2 条结果

排序:
储能系统技术 储能系统 ★ 5.0

一种基于云边智能的配电网分区与运行优化方法

A Cloud-Edge Intelligence-Based Optimization Method for Distribution Network Partitioning and Operation Considering Simulation Inaccuracy

Renjun Wang · Hongjun Gao · Haifeng Qiu · Longbo Luo 等6人 · IEEE Transactions on Power Systems · 2025年1月

针对分布式可再生能源和负荷波动对配电网运行安全的影响,本文提出一种基于云边协同智能的优化方法,用于配电网分区与实时运行控制。该方法在云端集中训练,在边缘侧实时执行,通过新型分区策略降低计算负担,并引入开关重要性评估方法以压缩动作空间维度。建立多智能体马尔可夫决策过程模型,结合改进的混合多智能体软Actor-Critic算法与域随机化方法,提升策略在仿真与实际系统存在模型失配时的鲁棒性。IEEE 33节点系统及实际445节点网络的仿真验证了所提方法的有效性与优势。

解读: 该云边协同优化技术对阳光电源PowerTitan储能系统和iSolarCloud平台具有重要应用价值。其云端训练-边缘执行架构可直接应用于ST系列储能变流器的分布式协调控制,通过多智能体强化学习实现储能集群的实时功率调度与电网分区管理。域随机化方法增强的鲁棒性可提升储能系统在模型失配场景下的控制可靠...

光伏发电技术 ★ 5.0

考虑时空特征的自适应编解码模型用于分布式光伏电站短期功率预测

Adaptive Encoder-Decoder Model Considering Spatio-Temporal Features for Short-Term Power Prediction of Distributed Photovoltaic Station

Xun Dou · Yehang Deng · Shunjiang Wang · Tianfeng Chu 等6人 · IEEE Transactions on Industry Applications · 2024年1月

考虑到运维成本和技术的影响,分布式光伏电站群内部通常缺乏足够的气象观测设备。所采集气象数据的偏差以及软硬件限制导致的光伏功率数据误差,将直接导致模型预测精度降低。为解决这一问题,本文提出一种具有自适应时空编解码结构的分布式光伏功率短期预测方法,该方法能够适应不同数据输入和不同天气条件下的预测需求,提高预测精度。首先,利用随机森林算法(RF)和皮尔逊相关系数(PCC)对特征重要性进行排序,选取关键输入数据。其次,提出一种基于长短期记忆网络(LSTM)和时空注意力机制(STA)的时空特征编解码模型,...

解读: 从阳光电源的业务视角来看,这项基于自适应时空编解码器的分布式光伏短期功率预测技术具有显著的战略应用价值。 **业务协同价值:**该技术直击分布式光伏电站运维痛点——气象观测设备不足导致的预测精度下降问题。对于阳光电源的智慧能源管理系统而言,精准的功率预测是实现光储协同优化的基础。通过LSTM与时空...